Hydrogen Sulfide Gas Amplified ROS Cascade: FeS@GOx Hybrid Nanozyme Designed for Boosting Tumor Chemodynamic Immunotherapy

化学 活性氧 葡萄糖氧化酶 肿瘤微环境 葡萄糖酸 过氧化氢 NADPH氧化酶 生物化学 细胞生物学 癌症研究 免疫系统 生物 免疫学
作者
Wanying Sun,Chengyuan Zhu,Juan Song,Shichen Ji,Bang‐Ping Jiang,Hong Liang,Xing‐Can Shen
出处
期刊:Advanced Healthcare Materials [Wiley]
卷期号:12 (23) 被引量:42
标识
DOI:10.1002/adhm.202300385
摘要

Chemodynamic immunotherapy that utilizes catalysts to produce reactive oxygen species (ROS) for killing tumor cells and arousing antitumor immunity has received considerable attention. However, it is still restricted by low ROS production efficiency and insufficient immune activation, due to intricate redox homeostasis in the tumor microenvironment (TME). Herein, a metalloprotein-like hybrid nanozyme (FeS@GOx) is designed by in situ growth of nanozyme (ferrous sulfide, FeS) in a natural enzyme (glucose oxidase, GOx) to amplify ROS cascade for boosting chemodynamic immunotherapy. In FeS@GOx, GOx allows the conversion of endogenous glucose to gluconic acid and hydrogen peroxide, which provides favorable increasing hydrogen peroxide for subsequent Fenton reaction of FeS nanozymes, thus reinforcing ROS production. Notably, hydrogen sulfide (H2 S) release is activated by the gluconic acid generation-related pH decrease, which can suppress the activity of endogenous thioredoxin reductase and catalase to further inhibit ROS elimination. Thus, FeS@GOx can sustainably amplify ROS accumulation and perturb intracellular redox homeostasis to improve chemodynamic therapy and trigger robust immunogenic cell death for effective immunotherapy combined with immune checkpoint blockade. This work proposes a feasible H2 S amplified ROS cascade strategy employing a bioinspired hybrid nanozyme, providing a novel pathway to multi-enzyme-mediated TME modulation for precise and efficient chemodynamic immunotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
su完成签到,获得积分10
刚刚
刚刚
自信富完成签到,获得积分10
1秒前
乖乖完成签到 ,获得积分10
1秒前
1秒前
liudiqiu应助Ll采纳,获得10
1秒前
灬乔关注了科研通微信公众号
2秒前
张菁完成签到,获得积分10
2秒前
菠萝吹雪应助xiachengcs采纳,获得30
3秒前
洋洋发布了新的文献求助10
3秒前
3秒前
4秒前
威武爆米花完成签到,获得积分10
5秒前
在水一方应助zhaowenxian采纳,获得10
6秒前
SS给SS的求助进行了留言
6秒前
7秒前
9秒前
Linden_bd完成签到 ,获得积分10
9秒前
科研通AI5应助yangyangyang采纳,获得10
9秒前
9秒前
漠北完成签到,获得积分10
9秒前
9秒前
Isabel完成签到 ,获得积分10
10秒前
起风了完成签到,获得积分10
10秒前
11秒前
Zjn-完成签到,获得积分10
11秒前
良辰应助lost采纳,获得10
11秒前
靓丽梦桃完成签到,获得积分20
12秒前
12秒前
0306完成签到,获得积分10
12秒前
李创业完成签到,获得积分10
12秒前
庆次完成签到 ,获得积分10
13秒前
ZY发布了新的文献求助10
13秒前
36456657应助跳跃的罡采纳,获得10
13秒前
36456657应助跳跃的罡采纳,获得10
13秒前
pluto应助跳跃的罡采纳,获得10
13秒前
丘比特应助跳跃的罡采纳,获得10
13秒前
13秒前
左手树完成签到,获得积分10
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762