The division of PM2.5-O3 composite airborne pollution across China based on spatiotemporal clustering

聚类分析 污染 空气污染 环境科学 复合数 污染物 中国 计算机科学 环境资源管理 地理 人工智能 生态学 算法 生物 考古
作者
Jing Yang,Xiaohong Chen,Manchun Li,Qi Yao,Qiancheng Lv,Bingbo Gao,Ziyue Chen
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:401: 136706-136706 被引量:11
标识
DOI:10.1016/j.jclepro.2023.136706
摘要

With the rapid increase of ground-level ozone concentrations, the comprehensive management of PM2.5-O3 composite air pollution has become one of the most pressing environmental concerns nowadays. However, due to the lack of national divisions, regional integrative management of PM2.5-O3 composite air pollution remains highly challenging. To fill this gap, we employed and adapted a repeated-bisection model to conduct spatiotemporal clustering of PM2.5-O3 composite airborne pollution across China based on multi-year airborne pollutant data in 364 cities. Specifically, two strategies were experimented: the spatiotemporal clustering of daily PM2.5/O3 and the spatiotemporal clustering of daily PM2.5 and O3 concentrations. Despite some differences, the clustering outputs from both strategies achieved a self-aggregation effect, indicating that cities with similar spatiotemporal patterns of simultaneous PM2.5 and O3 variations were usually located closely. This phenomenon suggests the necessity and feasibility of regional integrative management of composite airborne pollution. According to accuracy assessment based on Geographical Detector, both strategies achieved relatively satisfactory outputs. Specifically, the spatiotemporal clustering based on daily PM2.5 and O3 concentrations achieved a slightly better output, suggesting PM2.5/O3 cannot fully explain the complicated and uncertain PM2.5-O3 association. Based on the clustering output, we divided seven divisions of PM2.5-O3 composite airborne pollution across China. This research provides important decision support for conducting regional integrative management of composite airborne pollution. The framework of two-variable-oriented spatiotemporal clustering sheds useful light on the comprehensive management of multiple and mutually-interacting environmental issues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助含糊采纳,获得10
刚刚
dfggg发布了新的文献求助10
刚刚
跑在颖发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
yatou5651发布了新的文献求助10
刚刚
1秒前
乐乐应助koi采纳,获得10
1秒前
asdfqwer发布了新的文献求助10
1秒前
1秒前
chemhub完成签到,获得积分10
1秒前
杜杜完成签到,获得积分10
2秒前
周小慧发布了新的文献求助10
2秒前
2秒前
自由寻菱完成签到 ,获得积分10
2秒前
3秒前
Akim应助丘奇采纳,获得10
4秒前
美丽小蕾发布了新的文献求助10
4秒前
dingdong发布了新的文献求助10
4秒前
ZX完成签到 ,获得积分10
4秒前
九川发布了新的文献求助10
4秒前
5秒前
5秒前
SandyH关注了科研通微信公众号
6秒前
6秒前
公西元柏发布了新的文献求助10
6秒前
碱性沉默发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
SciGPT应助猪猪采纳,获得10
7秒前
123发布了新的文献求助10
7秒前
独特微笑完成签到,获得积分10
7秒前
7秒前
nuonuo完成签到,获得积分10
8秒前
⊙▽⊙完成签到,获得积分10
8秒前
9秒前
MHB发布了新的文献求助50
9秒前
汉堡包应助马保国123采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762