VL-MFL: UAV Visual Localization Based on Multisource Image Feature Learning

计算机科学 人工智能 计算机视觉 特征(语言学) 特征提取 图像(数学) 模式识别(心理学) 遥感 地质学 语言学 哲学
作者
Ganchao Liu,Chao Li,Sihang Zhang,Yuan Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:2
标识
DOI:10.1109/tgrs.2024.3383509
摘要

Obtaining the earth-fixed coordinates is a fundamental requirement for long-distance unmanned aerial vehicle (UAV) flight. Global navigation satellite systems are the most common location model, but their signals are susceptible to interference from obstacles and complex electromagnetic environments. To solve this issue, a visual localization framework based on multi-source image feature learning (VL-MFL) is proposed. In the proposed framework, the UAV is located by mapping airborne images to the satellite images with absolute coordinate positions. Firstly, for the heterogeneity issues caused by the different imaging environments of drone and satellite images, a lightweight Siamese network based on 3-D attention mechanism is proposed to extract the consistent features from the multi-source images. Secondly, to overcome the problem of inaccurate localization caused by the large receptive field of traditional convolutional neural networks, the cell-divided strategy is imported to strengthen the position mapping relationship of multi-source images features. Finally, based on similarity measurement, a confidence evaluation mechanism is established and a search region prediction method is proposed, which is effectively improved the accuracy and efficiency in matching localization. To evaluate the location performance of the proposed framework, several related methods are compared and analysed in details. The results on the real-world datasets indicate that the proposed method has achieved outstanding location accuracy and real-time performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助foxp3采纳,获得10
刚刚
1秒前
1秒前
jianni发布了新的文献求助10
2秒前
2秒前
Orange应助13633501455采纳,获得10
3秒前
3秒前
3秒前
蓝蜗牛发布了新的文献求助200
3秒前
风逝心扬完成签到,获得积分10
3秒前
Evan Wang发布了新的文献求助10
4秒前
李爱国应助鳗鱼凡波采纳,获得10
4秒前
糕手糕手糕糕手应助顾暖采纳,获得20
4秒前
CG2021发布了新的文献求助10
5秒前
5秒前
5秒前
冯11完成签到,获得积分10
5秒前
5秒前
111发布了新的文献求助10
5秒前
6秒前
歪比巴卜完成签到,获得积分10
6秒前
打打应助诚心小懒虫采纳,获得10
6秒前
彭于晏应助lingkai采纳,获得10
6秒前
zzyl完成签到,获得积分10
6秒前
6秒前
清森发布了新的文献求助10
7秒前
画图发布了新的文献求助10
7秒前
NexusExplorer应助嗨嗨采纳,获得10
7秒前
自觉的凛完成签到,获得积分10
8秒前
8秒前
冯11发布了新的文献求助10
8秒前
香饽饽发布了新的文献求助10
8秒前
Hello应助大方的若风采纳,获得10
8秒前
9秒前
9秒前
10秒前
Lee完成签到,获得积分10
10秒前
orixero应助3237924531采纳,获得10
10秒前
Evan Wang完成签到,获得积分10
10秒前
Lowman完成签到,获得积分10
11秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217353
求助须知:如何正确求助?哪些是违规求助? 2866617
关于积分的说明 8152518
捐赠科研通 2533308
什么是DOI,文献DOI怎么找? 1366190
科研通“疑难数据库(出版商)”最低求助积分说明 644710
邀请新用户注册赠送积分活动 617698