VL-MFL: UAV Visual Localization Based on Multisource Image Feature Learning

计算机科学 人工智能 计算机视觉 特征(语言学) 特征提取 图像(数学) 模式识别(心理学) 遥感 地质学 哲学 语言学
作者
Ganchao Liu,Chao Li,Sihang Zhang,Yuan Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:2
标识
DOI:10.1109/tgrs.2024.3383509
摘要

Obtaining the earth-fixed coordinates is a fundamental requirement for long-distance unmanned aerial vehicle (UAV) flight. Global navigation satellite systems are the most common location model, but their signals are susceptible to interference from obstacles and complex electromagnetic environments. To solve this issue, a visual localization framework based on multi-source image feature learning (VL-MFL) is proposed. In the proposed framework, the UAV is located by mapping airborne images to the satellite images with absolute coordinate positions. Firstly, for the heterogeneity issues caused by the different imaging environments of drone and satellite images, a lightweight Siamese network based on 3-D attention mechanism is proposed to extract the consistent features from the multi-source images. Secondly, to overcome the problem of inaccurate localization caused by the large receptive field of traditional convolutional neural networks, the cell-divided strategy is imported to strengthen the position mapping relationship of multi-source images features. Finally, based on similarity measurement, a confidence evaluation mechanism is established and a search region prediction method is proposed, which is effectively improved the accuracy and efficiency in matching localization. To evaluate the location performance of the proposed framework, several related methods are compared and analysed in details. The results on the real-world datasets indicate that the proposed method has achieved outstanding location accuracy and real-time performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗密欧与傅里叶完成签到 ,获得积分10
刚刚
1秒前
语冰完成签到,获得积分10
2秒前
slx发布了新的文献求助10
2秒前
夏侯德东发布了新的文献求助30
2秒前
爆米花应助Jqq采纳,获得10
3秒前
郝好完成签到 ,获得积分10
3秒前
无私秋珊应助小桃不逃采纳,获得10
3秒前
努力发布了新的文献求助30
4秒前
充电宝应助Danboard采纳,获得10
5秒前
Vickicherry应助酷酷半芹采纳,获得10
5秒前
6秒前
正直无极发布了新的文献求助10
6秒前
6秒前
小明同学发布了新的文献求助10
6秒前
穿堂风发布了新的文献求助10
7秒前
8秒前
西红柿炒番茄完成签到,获得积分10
10秒前
周周发布了新的文献求助10
11秒前
快乐马里奥完成签到 ,获得积分10
12秒前
guard发布了新的文献求助10
14秒前
Vickicherry应助aillyzm采纳,获得20
15秒前
谨慎雪碧发布了新的文献求助10
19秒前
和谐乐儿完成签到,获得积分10
19秒前
19秒前
生动路人应助阳佟半仙采纳,获得10
20秒前
TWT驳回了孙燕应助
21秒前
周周完成签到,获得积分10
21秒前
淡定从凝发布了新的文献求助10
21秒前
慕青应助哭泣的犀牛采纳,获得10
22秒前
林志迎发布了新的文献求助10
22秒前
888发布了新的文献求助10
22秒前
810完成签到,获得积分10
23秒前
slx完成签到,获得积分10
24秒前
斯文败类应助tanrui采纳,获得10
25秒前
27秒前
28秒前
30秒前
30秒前
程宇发布了新的文献求助10
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994126
求助须知:如何正确求助?哪些是违规求助? 3534654
关于积分的说明 11266191
捐赠科研通 3274571
什么是DOI,文献DOI怎么找? 1806394
邀请新用户注册赠送积分活动 883273
科研通“疑难数据库(出版商)”最低求助积分说明 809724