VL-MFL: UAV Visual Localization Based on Multisource Image Feature Learning

计算机科学 人工智能 计算机视觉 特征(语言学) 特征提取 图像(数学) 模式识别(心理学) 遥感 地质学 哲学 语言学
作者
Ganchao Liu,Chao Li,Sihang Zhang,Yuan Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:2
标识
DOI:10.1109/tgrs.2024.3383509
摘要

Obtaining the earth-fixed coordinates is a fundamental requirement for long-distance unmanned aerial vehicle (UAV) flight. Global navigation satellite systems are the most common location model, but their signals are susceptible to interference from obstacles and complex electromagnetic environments. To solve this issue, a visual localization framework based on multi-source image feature learning (VL-MFL) is proposed. In the proposed framework, the UAV is located by mapping airborne images to the satellite images with absolute coordinate positions. Firstly, for the heterogeneity issues caused by the different imaging environments of drone and satellite images, a lightweight Siamese network based on 3-D attention mechanism is proposed to extract the consistent features from the multi-source images. Secondly, to overcome the problem of inaccurate localization caused by the large receptive field of traditional convolutional neural networks, the cell-divided strategy is imported to strengthen the position mapping relationship of multi-source images features. Finally, based on similarity measurement, a confidence evaluation mechanism is established and a search region prediction method is proposed, which is effectively improved the accuracy and efficiency in matching localization. To evaluate the location performance of the proposed framework, several related methods are compared and analysed in details. The results on the real-world datasets indicate that the proposed method has achieved outstanding location accuracy and real-time performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烤番薯发布了新的文献求助10
1秒前
芒果好高完成签到,获得积分10
1秒前
1秒前
聪明邪欢完成签到,获得积分10
2秒前
土味霸总完成签到,获得积分10
2秒前
ZWX发布了新的文献求助10
2秒前
gww完成签到,获得积分10
3秒前
小可爱发布了新的文献求助10
4秒前
6秒前
8秒前
毛毛发布了新的文献求助10
11秒前
科研通AI5应助欣慰冬亦采纳,获得10
12秒前
Jasper应助YWR采纳,获得10
16秒前
16秒前
EKo应助tian采纳,获得10
16秒前
18秒前
CUI完成签到,获得积分20
18秒前
18秒前
20秒前
stanafterlife完成签到,获得积分10
21秒前
21秒前
Cui完成签到,获得积分10
22秒前
顺利的三德完成签到,获得积分10
22秒前
22秒前
23秒前
andy发布了新的文献求助10
23秒前
23秒前
Anthone发布了新的文献求助10
24秒前
24秒前
999完成签到,获得积分10
26秒前
ZZQ发布了新的文献求助10
26秒前
雨纷纷发布了新的文献求助10
26秒前
26秒前
27秒前
神奇海螺完成签到,获得积分10
27秒前
Hello应助许水桃采纳,获得10
27秒前
你香发布了新的文献求助10
27秒前
CUI发布了新的文献求助20
28秒前
小文章发布了新的文献求助10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756864
求助须知:如何正确求助?哪些是违规求助? 3300242
关于积分的说明 10113026
捐赠科研通 3014778
什么是DOI,文献DOI怎么找? 1655705
邀请新用户注册赠送积分活动 790073
科研通“疑难数据库(出版商)”最低求助积分说明 753552