VL-MFL: UAV Visual Localization Based on Multisource Image Feature Learning

计算机科学 人工智能 计算机视觉 特征(语言学) 特征提取 图像(数学) 模式识别(心理学) 遥感 地质学 语言学 哲学
作者
Ganchao Liu,Chao Li,Sihang Zhang,Yuan Yuan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:13
标识
DOI:10.1109/tgrs.2024.3383509
摘要

Obtaining the earth-fixed coordinates is a fundamental requirement for long-distance unmanned aerial vehicle (UAV) flight. Global navigation satellite systems are the most common location model, but their signals are susceptible to interference from obstacles and complex electromagnetic environments. To solve this issue, a visual localization framework based on multi-source image feature learning (VL-MFL) is proposed. In the proposed framework, the UAV is located by mapping airborne images to the satellite images with absolute coordinate positions. Firstly, for the heterogeneity issues caused by the different imaging environments of drone and satellite images, a lightweight Siamese network based on 3-D attention mechanism is proposed to extract the consistent features from the multi-source images. Secondly, to overcome the problem of inaccurate localization caused by the large receptive field of traditional convolutional neural networks, the cell-divided strategy is imported to strengthen the position mapping relationship of multi-source images features. Finally, based on similarity measurement, a confidence evaluation mechanism is established and a search region prediction method is proposed, which is effectively improved the accuracy and efficiency in matching localization. To evaluate the location performance of the proposed framework, several related methods are compared and analysed in details. The results on the real-world datasets indicate that the proposed method has achieved outstanding location accuracy and real-time performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
左左曦完成签到,获得积分10
8秒前
上上签完成签到,获得积分10
8秒前
无心的星月完成签到 ,获得积分10
11秒前
好吃的小米完成签到,获得积分10
11秒前
怡然猎豹完成签到,获得积分0
13秒前
14秒前
上下完成签到 ,获得积分10
16秒前
Mr.Ren完成签到,获得积分10
17秒前
xu完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
妍宝贝完成签到 ,获得积分10
20秒前
23秒前
24秒前
小成完成签到,获得积分10
26秒前
香蕉发布了新的文献求助10
26秒前
爱科研的小虞完成签到 ,获得积分10
26秒前
康康爱研究完成签到 ,获得积分10
27秒前
拾一完成签到,获得积分10
27秒前
陈昱桦完成签到,获得积分10
29秒前
橘子石榴完成签到,获得积分10
30秒前
在水一方应助DDD采纳,获得10
30秒前
柳树完成签到,获得积分10
30秒前
hony完成签到,获得积分10
32秒前
32秒前
33秒前
香蕉完成签到,获得积分10
34秒前
花花完成签到,获得积分10
34秒前
浮尘完成签到 ,获得积分0
37秒前
38秒前
任伟超完成签到,获得积分10
40秒前
41秒前
Isabel完成签到 ,获得积分10
42秒前
木雨亦潇潇完成签到,获得积分10
44秒前
44秒前
科研通AI6应助科研通管家采纳,获得10
44秒前
科研通AI6应助科研通管家采纳,获得10
44秒前
44秒前
44秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5677086
求助须知:如何正确求助?哪些是违规求助? 4970454
关于积分的说明 15159354
捐赠科研通 4836760
什么是DOI,文献DOI怎么找? 2591317
邀请新用户注册赠送积分活动 1544792
关于科研通互助平台的介绍 1502815