Fusion decision strategies for multiple criterion preferences based on three-way decision

计算机科学 融合 人工智能 运筹学 机器学习 数学 语言学 哲学
作者
Zhaohui Qi,Hui Li,Fang Liu,Tao Chen,Jianhua Dai
出处
期刊:Information Fusion [Elsevier]
卷期号:108: 102356-102356 被引量:3
标识
DOI:10.1016/j.inffus.2024.102356
摘要

In multi-criteria decision-making (MCDM) problems, with the increasing number of decision makers and candidate objects, some traditional decision-making approaches can no longer be applied to such scenarios, and how to fully ensure the participation of each decision maker as well as reasonably integrate the decision makers' assessment information on the objects becomes a problem. As a risk-averse decision-making method, three-way decision can be applied to MCDM to greatly reduce the decision-making risk. In this paper, combining the decision makers' criterion preferences and the three-way decision model, we propose three novel three-way MCDM models incorporating multiple criterion preferences to solve this problem. Firstly, a novel criterion preference-based decision risk loss measure function is proposed, and a new way of fusing multiple decision risk loss functions is established. Next, the description of the objects is obtained by the affinity propagation clustering algorithm, and three criterion preferences aggregation strategies (optimistic, compromise and pessimistic) are proposed to cope with the demand for group in three scenarios (two extremes and a moderate), respectively, then three conditional probability estimation methods are established. Subsequently, three three-way MCDM models are built to obtain the ranking results of all candidate objects in different group demand scenarios. In addition, three ranking performance testing indices are introduced to evaluate the reasonableness of the ranking results. Finally, a case application, comparative experiments, data set experimental analysis, statistical test analysis and comprehensive discussion are presented to verify the rationality, effectiveness and superiority of the proposed methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
卑微科研小白完成签到,获得积分10
2秒前
归海听云完成签到,获得积分10
2秒前
Glamour_Joy完成签到,获得积分10
2秒前
萍萍完成签到,获得积分10
2秒前
星辰大海应助科研通管家采纳,获得10
3秒前
asdfqwer应助科研通管家采纳,获得20
3秒前
淡然红牛应助科研通管家采纳,获得20
3秒前
orixero应助科研通管家采纳,获得10
3秒前
cc_huixianxie应助科研通管家采纳,获得10
3秒前
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
asdfqwer应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得100
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
4秒前
Moonber完成签到,获得积分10
6秒前
萍萍发布了新的文献求助100
6秒前
xiahongmei完成签到 ,获得积分10
6秒前
123完成签到 ,获得积分10
7秒前
Anonymous完成签到,获得积分10
7秒前
无敌小天天完成签到 ,获得积分10
8秒前
迦佭完成签到,获得积分10
12秒前
任晴完成签到,获得积分10
13秒前
小英完成签到 ,获得积分10
13秒前
枫林摇曳完成签到 ,获得积分10
14秒前
14秒前
16秒前
Akim应助njusdf采纳,获得10
17秒前
cookie完成签到,获得积分10
18秒前
19秒前
wufel完成签到,获得积分10
20秒前
丹丹子完成签到 ,获得积分10
20秒前
AKEMI发布了新的文献求助10
21秒前
hyjcnhyj完成签到,获得积分10
21秒前
jing111完成签到,获得积分10
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788133
关于积分的说明 7784741
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011