Toward Video Anomaly Retrieval From Video Anomaly Detection: New Benchmarks and Model

计算机科学 光学(聚焦) 异常检测 杠杆(统计) 异常(物理) 背景(考古学) 情报检索 任务(项目管理) 钥匙(锁) 事件(粒子物理) 人工智能 数据挖掘 物理 凝聚态物理 古生物学 计算机安全 管理 量子力学 光学 经济 生物
作者
Peng Wu,Jing Liu,Xiangteng He,Yuxin Peng,Peng Wang,Yanning Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 2213-2225 被引量:8
标识
DOI:10.1109/tip.2024.3374070
摘要

Video anomaly detection (VAD) has been paid increasing attention due to its potential applications, its current dominant tasks focus on online detecting anomalies, which can be roughly interpreted as the binary or multiple event classification. However, such a setup that builds relationships between complicated anomalous events and single labels, e.g., "vandalism", is superficial, since single labels are deficient to characterize anomalous events. In reality, users tend to search a specific video rather than a series of approximate videos. Therefore, retrieving anomalous events using detailed descriptions is practical and positive but few researches focus on this. In this context, we propose a novel task called Video Anomaly Retrieval (VAR), which aims to pragmatically retrieve relevant anomalous videos by cross-modalities, e.g., language descriptions and synchronous audios. Unlike the current video retrieval where videos are assumed to be temporally well-trimmed with short duration, VAR is devised to retrieve long untrimmed videos which may be partially relevant to the given query. To achieve this, we present two large-scale VAR benchmarks and design a model called Anomaly-Led Alignment Network (ALAN) for VAR. In ALAN, we propose an anomaly-led sampling to focus on key segments in long untrimmed videos. Then, we introduce an efficient pretext task to enhance semantic associations between video-text fine-grained representations. Besides, we leverage two complementary alignments to further match cross-modal contents. Experimental results on two benchmarks reveal the challenges of VAR task and also demonstrate the advantages of our tailored method. Captions are publicly released at https://github.com/Roc-Ng/VAR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kinghao完成签到,获得积分10
3秒前
3秒前
3秒前
Joey完成签到,获得积分20
4秒前
4秒前
5秒前
不眠的人完成签到,获得积分10
5秒前
6秒前
7秒前
BBking完成签到,获得积分10
7秒前
顾矜应助douyq采纳,获得10
7秒前
7秒前
8秒前
沉默洋葱完成签到,获得积分10
9秒前
镜子发布了新的文献求助10
10秒前
小北发布了新的文献求助10
11秒前
Lucas应助学术小王子采纳,获得10
12秒前
12秒前
cy关注了科研通微信公众号
12秒前
胡几枚发布了新的文献求助10
12秒前
JHcHuN完成签到,获得积分10
13秒前
13秒前
13秒前
Owen应助Tessa采纳,获得10
13秒前
Waqas发布了新的文献求助10
13秒前
英俊的铭应助xxxhl采纳,获得10
13秒前
gf发布了新的文献求助10
13秒前
yangya给yangya的求助进行了留言
14秒前
jianghe完成签到,获得积分10
15秒前
yy应助jacs111采纳,获得10
17秒前
曹梦梦发布了新的文献求助10
17秒前
华子黄发布了新的文献求助10
18秒前
CarolineOY应助小白采纳,获得10
18秒前
zzyytt完成签到,获得积分10
19秒前
香蕉觅云应助威武从霜采纳,获得10
19秒前
ysl发布了新的文献求助10
19秒前
搜集达人应助JHcHuN采纳,获得10
21秒前
21秒前
QASD发布了新的文献求助10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741086
求助须知:如何正确求助?哪些是违规求助? 3283852
关于积分的说明 10037232
捐赠科研通 3000684
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783858
科研通“疑难数据库(出版商)”最低求助积分说明 750442