Exploring non-Euclidean relationships in EEG emotion recognition: A dynamic graph attention network

计算机科学 欧几里德几何 脑电图 图形 情绪识别 欧几里德距离 人工智能 模式识别(心理学) 认知心理学 心理学 理论计算机科学 数学 几何学 精神科
作者
Rongrong Fu,Mengpu Cai,Shiwei Wang,Yaodong Wang,Chengcheng Jia
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:94: 106276-106276 被引量:18
标识
DOI:10.1016/j.bspc.2024.106276
摘要

Deep learning classification models based on electroencephalogram (EEG) emotion recognition have demonstrated considerable proficiency in the categorization of emotional states. However, these models have limitations in their capability to analyze the active states and cooperative relationships among distinct brain regions. This study proposes a dynamic graph attention network (DGAT) for EEG emotion recognition, which learns the features of each channel and leverages multiple-head self-attention mechanisms to capture non-Euclidean relationships between channels. Then, we use differential entropy features of emotions signals on the SJTU emotion EEG dataset (SEED). The DGAT model achieved improved subject-dependent and cross-subject classification accuracy compared to previous models. Moreover, ablation studies show that the channel weight matrix(CWM) and appropriate hyper-parameters can improve the performance of the DGAT model significantly. Furthermore, by conducting interpretable analysis of the new connections and electrode weights learned by the model, we find that these connection weight relationships reflect a certain degree of coordination within the brain for EEG-based emotion recognition. These findings provide a new method for EEG emotion recognition and highlights the potential for using deep learning models to analyze the active state and synergistic relationships among brain regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
关23完成签到 ,获得积分10
1秒前
1秒前
大鱼发布了新的文献求助10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
哦豁应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Hello应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
3秒前
慕青应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
4秒前
田様应助科研通管家采纳,获得10
4秒前
哦豁应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5767182
求助须知:如何正确求助?哪些是违规求助? 5568519
关于积分的说明 15414583
捐赠科研通 4901198
什么是DOI,文献DOI怎么找? 2636869
邀请新用户注册赠送积分活动 1585074
关于科研通互助平台的介绍 1540240