Electrophysiological properties of dorsal root ganglion neurons cultured on 3D silicon micro-pillar substrates

背根神经节 神经突 电生理学 膜片钳 神经节 神经科学 神经元 细胞生物学 解剖 感觉系统 生物物理学 生物 体外 生物化学
作者
Tihana Marciuš,Alexandru‐Florian Deftu,Ivana Vuka,Dries Braeken,Damir Sapunar
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:407: 110143-110143
标识
DOI:10.1016/j.jneumeth.2024.110143
摘要

Silicon-based micro-pillar substrates (MPS), as three-dimensional cell culture platforms with vertically aligned micro-patterned scaffolding structures, are known to facilitate high-quality growth and morphology of dorsal root ganglion (DRG) sensory neurons, promote neurite outgrowth and enhance neurite alignment. However, the electrophysiological aspects of DRG neurons cultured on silicon MPSs have not been thoroughly investigated, which is of greatest importance to ensure that such substrates do not disrupt neuronal homeostasis and function before their widespread adoption in diverse biomedical applications. We conducted whole-cell patch-clamp recordings to explore the electrophysiological properties of DRG neurons cultured on MPS arrays, utilizing a custom-made upright patch-clamp setup. Our findings revealed that DRG neurons exhibited similar electrophysiological responses on patterned MPS samples when compared to the control planar glass surfaces. Notably, there were no significant differences observed in the action potential parameters or firing patterns of action potentials between neurons grown on either substrate. In the current study we for the first time confirmed that successful electrophysiological recordings can be obtained from the cells grown on MPS. Our results imply that, despite the potential alterations caused by the cumulative trauma of tissue harvest and cell dissociation, essential functional cell properties of DRG neurons appear to be relatively maintained on MPS surfaces. Therefore, vertically aligned silicon MPSs could be considered as a potentially effective three-dimensional system for supporting a controlled cellular environment in culture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ldy完成签到,获得积分10
刚刚
1秒前
2秒前
zq1992nl完成签到,获得积分10
2秒前
lixiniverson完成签到 ,获得积分10
3秒前
小钱钱完成签到,获得积分10
3秒前
4秒前
tangchao完成签到,获得积分10
4秒前
今后应助一二采纳,获得10
5秒前
Garry完成签到,获得积分10
5秒前
淡淡的若冰应助Tonald Yang采纳,获得10
5秒前
shuogesama完成签到,获得积分10
5秒前
陈里里完成签到 ,获得积分10
5秒前
苏钰发布了新的文献求助10
6秒前
正直幼枫发布了新的文献求助10
8秒前
勤奋鞋子完成签到,获得积分10
9秒前
欢呼采文完成签到,获得积分20
9秒前
小潘完成签到 ,获得积分10
10秒前
哎嘿应助冷傲迎梦采纳,获得10
10秒前
徐什么宝完成签到,获得积分10
11秒前
FYm完成签到,获得积分10
11秒前
myth完成签到,获得积分10
12秒前
飞鱼完成签到,获得积分10
12秒前
虞无声完成签到,获得积分20
12秒前
qiqi完成签到,获得积分10
12秒前
cyrong完成签到,获得积分10
13秒前
风吹独自凉完成签到,获得积分10
13秒前
七里海完成签到,获得积分10
13秒前
14秒前
14秒前
17秒前
honger完成签到,获得积分10
17秒前
wpybird完成签到,获得积分10
17秒前
谷子完成签到 ,获得积分10
18秒前
Lucas应助欢呼的友容采纳,获得10
18秒前
kourosz完成签到,获得积分10
19秒前
曲夜白完成签到 ,获得积分10
19秒前
温暖小松鼠完成签到 ,获得积分10
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150742
求助须知:如何正确求助?哪些是违规求助? 2802264
关于积分的说明 7846871
捐赠科研通 2459614
什么是DOI,文献DOI怎么找? 1309322
科研通“疑难数据库(出版商)”最低求助积分说明 628871
版权声明 601757