亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Calibrate the Inter-Observer Segmentation Uncertainty via Diagnosis-First Principle

分割 基本事实 人工智能 计算机科学 图像分割 计算机视觉 尺度空间分割 模式识别(心理学) 医学影像学
作者
Junde Wu,Yu Zhang,Huihui Fang,Lixin Duan,Mingkui Tan,Weihua Yang,Chunhui Wang,Huiying Liu,Yueming Jin,Yanwu Xu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (9): 3331-3342
标识
DOI:10.1109/tmi.2024.3394045
摘要

Many of the tissues/lesions in the medical images may be ambiguous. Therefore, medical segmentation is typically annotated by a group of clinical experts to mitigate personal bias. A common solution to fuse different annotations is the majority vote, e.g., taking the average of multiple labels. However, such a strategy ignores the difference between the grader expertness. Inspired by the observation that medical image segmentation is usually used to assist the disease diagnosis in clinical practice, we propose the diagnosis-first principle, which is to take disease diagnosis as the criterion to calibrate the inter-observer segmentation uncertainty. Following this idea, a framework named Diagnosis-First segmentation Framework (DiFF) is proposed. Specifically, DiFF will first learn to fuse the multi-rater segmentation labels to a single ground-truth which could maximize the disease diagnosis performance. We dubbed the fused ground-truth as Diagnosis-First Ground-truth (DF-GT). Then, the Take and Give Model (T&G Model) to segment DF-GT from the raw image is proposed. With the T&G Model, DiFF can learn the segmentation with the calibrated uncertainty that facilitate the disease diagnosis. We verify the effectiveness of DiFF on three different medical segmentation tasks: optic-disc/optic-cup (OD/OC) segmentation on fundus images, thyroid nodule segmentation on ultrasound images, and skin lesion segmentation on dermoscopic images. Experimental results show that the proposed DiFF can effectively calibrate the segmentation uncertainty, and thus significantly facilitate the corresponding disease diagnosis, which outperforms previous state-of-the-art multi-rater learning methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzl完成签到 ,获得积分10
1秒前
Cedricharr1s完成签到,获得积分0
15秒前
29秒前
32秒前
哈哈哈哈哈完成签到,获得积分10
56秒前
1分钟前
2021完成签到 ,获得积分10
1分钟前
Owen应助哈哈哈哈哈采纳,获得10
1分钟前
1分钟前
1分钟前
谦谦神棍发布了新的文献求助30
1分钟前
JamesPei应助白丁香采纳,获得30
1分钟前
善学以致用应助医生采纳,获得10
1分钟前
田様应助ZCH采纳,获得10
1分钟前
1分钟前
小二郎应助三点水采纳,获得10
1分钟前
医生发布了新的文献求助10
1分钟前
1分钟前
健康的梦曼完成签到 ,获得积分20
1分钟前
大方易巧完成签到 ,获得积分10
1分钟前
红橙黄绿蓝靛紫111完成签到,获得积分10
2分钟前
草木青完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
Suzy应助科研通管家采纳,获得10
2分钟前
草木青发布了新的文献求助10
2分钟前
jhhh发布了新的文献求助10
3分钟前
闲听花落完成签到 ,获得积分10
3分钟前
陶醉觅夏发布了新的文献求助100
3分钟前
chunjianghua完成签到,获得积分10
3分钟前
chunjianghua发布了新的文献求助10
3分钟前
Ava应助DueR采纳,获得10
3分钟前
3分钟前
谦谦神棍完成签到,获得积分10
3分钟前
CipherSage应助Pawn采纳,获得10
3分钟前
满意人英完成签到,获得积分10
3分钟前
4分钟前
领导范儿应助科研通管家采纳,获得10
4分钟前
下文献的蜉蝣完成签到 ,获得积分10
4分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422838
求助须知:如何正确求助?哪些是违规求助? 3023221
关于积分的说明 8903845
捐赠科研通 2710590
什么是DOI,文献DOI怎么找? 1486605
科研通“疑难数据库(出版商)”最低求助积分说明 687127
邀请新用户注册赠送积分活动 682330