0302 Sleep Staging Classification from Wearable Signals Using Deep Learning

可穿戴计算机 睡眠(系统调用) 多导睡眠图 人工智能 睡眠阶段 计算机科学 医学 物理医学与康复 心理学 听力学 机器学习 脑电图 神经科学 嵌入式系统 操作系统
作者
Conor Heneghan,Ryan Gillard,Logan Niehaus,Logan Schneider,Marius Guerard
出处
期刊:Sleep [Oxford University Press]
卷期号:47 (Supplement_1): A130-A130
标识
DOI:10.1093/sleep/zsae067.0302
摘要

Abstract Introduction Typical data derived from a wrist worn device include accelerometer and photoplethysmogram (PPG) sensor signals . These reflect underlying movement, heart rate, and vascular dynamics that contain sleep stage information. We investigated the ability of a deep learning network to map raw data from such sensors to estimated sleep stages defined by full polysomnography scoring. Methods A convolutional neural network (CNN) was proposed for application to raw PPG (green light at 25 Hz) and 3D accelerometer data (also sampled at 25 Hz). The CNN had 70 hidden layers and output labels were mapped to four classes (wake, light sleep, deep sleep, and REM sleep) where light sleep is defined as Stages N1 and N2. The CNN was pretrained using 1654 records of finger PPG data from the Multi-Ethnic Study of Atherosclerosis (MESA) sleep records. The system was then further trained and evaluated on an internal set of 184 records obtained from adults (mean age = 68) with corresponding scored PSG sleep stage labels. Data augmentation techniques were used to create additional training data. The system was then tested using a withheld data set of 16 records. The overall performance of the system was evaluated by calculating two stage (wake versus sleep) and four stage accuracy and Cohen’s kappa values (𝜅). Results The overall performance for two-stage wake/sleep classification was an accuracy of 0.94 and 𝜅=0.79. For four stage classification, the accuracy was 0.79 and 𝜅=0.66. A comparable figure for expert human scoring four-stage class is accuracy of 0.8-0.85 and 𝜅=0.7-0.75. Conclusion Raw accelerometer and PPG signals contain a significant amount of information related to underlying sleep stages, and can be trained to produce hypnograms which approach the accuracy of human scorers. This may provide utility for both multi-night clinical use and underlying research in sleep science. Support (if any) This research was funded by Google Inc.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助SY采纳,获得10
刚刚
2秒前
佳丽完成签到,获得积分10
3秒前
3秒前
白昼星辰发布了新的文献求助10
3秒前
mxl发布了新的文献求助10
3秒前
黎明完成签到,获得积分10
3秒前
浮游应助tly采纳,获得10
3秒前
踏雪飞鸿完成签到,获得积分10
4秒前
丰富的天佑完成签到 ,获得积分10
5秒前
问天完成签到 ,获得积分10
6秒前
Fairy完成签到,获得积分10
6秒前
黎明发布了新的文献求助10
7秒前
隐形冷亦完成签到,获得积分10
7秒前
8秒前
8秒前
深情安青应助清爽慕山采纳,获得10
8秒前
Orange应助mnc采纳,获得10
10秒前
斯文败类应助MA采纳,获得10
11秒前
绵杨发布了新的文献求助10
12秒前
12秒前
14秒前
馍夹菜完成签到,获得积分10
15秒前
zfd发布了新的文献求助10
16秒前
吴海娇完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
一个可爱玉完成签到,获得积分20
19秒前
英俊的铭应助chaoschen采纳,获得50
23秒前
星辰大海应助忧心的清炎采纳,获得10
23秒前
慕青应助一个可爱玉采纳,获得10
24秒前
26秒前
充电宝应助Luke采纳,获得10
27秒前
量子星尘发布了新的文献求助10
28秒前
28秒前
30秒前
dala发布了新的文献求助30
31秒前
Go完成签到,获得积分10
32秒前
爆米花应助无心的土豆采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425319
求助须知:如何正确求助?哪些是违规求助? 4539387
关于积分的说明 14167836
捐赠科研通 4456897
什么是DOI,文献DOI怎么找? 2444339
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740