0302 Sleep Staging Classification from Wearable Signals Using Deep Learning

可穿戴计算机 睡眠(系统调用) 多导睡眠图 人工智能 睡眠阶段 计算机科学 医学 物理医学与康复 心理学 听力学 机器学习 脑电图 神经科学 嵌入式系统 操作系统
作者
Conor Heneghan,Ryan Gillard,Logan Niehaus,Logan Schneider,Marius Guerard
出处
期刊:Sleep [Oxford University Press]
卷期号:47 (Supplement_1): A130-A130
标识
DOI:10.1093/sleep/zsae067.0302
摘要

Abstract Introduction Typical data derived from a wrist worn device include accelerometer and photoplethysmogram (PPG) sensor signals . These reflect underlying movement, heart rate, and vascular dynamics that contain sleep stage information. We investigated the ability of a deep learning network to map raw data from such sensors to estimated sleep stages defined by full polysomnography scoring. Methods A convolutional neural network (CNN) was proposed for application to raw PPG (green light at 25 Hz) and 3D accelerometer data (also sampled at 25 Hz). The CNN had 70 hidden layers and output labels were mapped to four classes (wake, light sleep, deep sleep, and REM sleep) where light sleep is defined as Stages N1 and N2. The CNN was pretrained using 1654 records of finger PPG data from the Multi-Ethnic Study of Atherosclerosis (MESA) sleep records. The system was then further trained and evaluated on an internal set of 184 records obtained from adults (mean age = 68) with corresponding scored PSG sleep stage labels. Data augmentation techniques were used to create additional training data. The system was then tested using a withheld data set of 16 records. The overall performance of the system was evaluated by calculating two stage (wake versus sleep) and four stage accuracy and Cohen’s kappa values (𝜅). Results The overall performance for two-stage wake/sleep classification was an accuracy of 0.94 and 𝜅=0.79. For four stage classification, the accuracy was 0.79 and 𝜅=0.66. A comparable figure for expert human scoring four-stage class is accuracy of 0.8-0.85 and 𝜅=0.7-0.75. Conclusion Raw accelerometer and PPG signals contain a significant amount of information related to underlying sleep stages, and can be trained to produce hypnograms which approach the accuracy of human scorers. This may provide utility for both multi-night clinical use and underlying research in sleep science. Support (if any) This research was funded by Google Inc.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
钮傲白完成签到,获得积分10
1秒前
汉堡包应助万默采纳,获得10
2秒前
2秒前
光速2000完成签到,获得积分10
2秒前
科研巨恼完成签到,获得积分10
2秒前
2秒前
双子玖兰莒完成签到,获得积分10
2秒前
用户3900完成签到,获得积分10
2秒前
Hello应助细心的紫菱采纳,获得10
2秒前
2秒前
2秒前
Nora发布了新的文献求助30
2秒前
3秒前
3秒前
Daria发布了新的文献求助10
4秒前
酷波er应助爱笑小笼包采纳,获得10
4秒前
vizi应助爱笑小笼包采纳,获得10
4秒前
Betty完成签到,获得积分10
4秒前
5秒前
浮游应助keyring采纳,获得10
5秒前
Orange应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
鸣笛应助科研通管家采纳,获得20
5秒前
科目三应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
稳重傲柔应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
ding应助yummy采纳,获得10
6秒前
6秒前
鸣笛应助科研通管家采纳,获得20
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4555627
求助须知:如何正确求助?哪些是违规求助? 3983955
关于积分的说明 12334119
捐赠科研通 3654003
什么是DOI,文献DOI怎么找? 2012868
邀请新用户注册赠送积分活动 1047845
科研通“疑难数据库(出版商)”最低求助积分说明 936281