0302 Sleep Staging Classification from Wearable Signals Using Deep Learning

可穿戴计算机 睡眠(系统调用) 多导睡眠图 人工智能 睡眠阶段 计算机科学 医学 物理医学与康复 心理学 听力学 机器学习 脑电图 神经科学 嵌入式系统 操作系统
作者
Conor Heneghan,Ryan Gillard,Logan Niehaus,Logan Schneider,Marius Guerard
出处
期刊:Sleep [Oxford University Press]
卷期号:47 (Supplement_1): A130-A130
标识
DOI:10.1093/sleep/zsae067.0302
摘要

Abstract Introduction Typical data derived from a wrist worn device include accelerometer and photoplethysmogram (PPG) sensor signals . These reflect underlying movement, heart rate, and vascular dynamics that contain sleep stage information. We investigated the ability of a deep learning network to map raw data from such sensors to estimated sleep stages defined by full polysomnography scoring. Methods A convolutional neural network (CNN) was proposed for application to raw PPG (green light at 25 Hz) and 3D accelerometer data (also sampled at 25 Hz). The CNN had 70 hidden layers and output labels were mapped to four classes (wake, light sleep, deep sleep, and REM sleep) where light sleep is defined as Stages N1 and N2. The CNN was pretrained using 1654 records of finger PPG data from the Multi-Ethnic Study of Atherosclerosis (MESA) sleep records. The system was then further trained and evaluated on an internal set of 184 records obtained from adults (mean age = 68) with corresponding scored PSG sleep stage labels. Data augmentation techniques were used to create additional training data. The system was then tested using a withheld data set of 16 records. The overall performance of the system was evaluated by calculating two stage (wake versus sleep) and four stage accuracy and Cohen’s kappa values (𝜅). Results The overall performance for two-stage wake/sleep classification was an accuracy of 0.94 and 𝜅=0.79. For four stage classification, the accuracy was 0.79 and 𝜅=0.66. A comparable figure for expert human scoring four-stage class is accuracy of 0.8-0.85 and 𝜅=0.7-0.75. Conclusion Raw accelerometer and PPG signals contain a significant amount of information related to underlying sleep stages, and can be trained to produce hypnograms which approach the accuracy of human scorers. This may provide utility for both multi-night clinical use and underlying research in sleep science. Support (if any) This research was funded by Google Inc.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
自觉绿柏发布了新的文献求助10
3秒前
林夕发布了新的文献求助10
4秒前
孙栋发布了新的文献求助30
4秒前
4秒前
4秒前
苏卿应助顺心羊采纳,获得30
4秒前
等乙天发布了新的文献求助10
8秒前
研友_8y2G0L发布了新的文献求助10
9秒前
幸福大白发布了新的文献求助10
9秒前
传奇3应助韩乐乐采纳,获得10
11秒前
talpionchen发布了新的文献求助30
11秒前
14秒前
额狐狸发布了新的文献求助10
14秒前
orixero应助FUNG采纳,获得10
14秒前
伴佰发布了新的文献求助10
15秒前
美丽的楼房完成签到 ,获得积分10
15秒前
暴躁的幼荷完成签到 ,获得积分10
15秒前
16秒前
wanci应助1953采纳,获得10
16秒前
believe完成签到,获得积分10
17秒前
17秒前
无花果应助今日甜分超标采纳,获得10
18秒前
19秒前
20秒前
yy发布了新的文献求助10
21秒前
鱿鱼炒黄瓜发布了新的文献求助200
21秒前
21秒前
22秒前
22秒前
韩乐乐发布了新的文献求助10
24秒前
顺心羊完成签到,获得积分20
24秒前
SGOM发布了新的文献求助10
26秒前
26秒前
研友_8y2G0L发布了新的文献求助10
29秒前
孙栋发布了新的文献求助30
30秒前
31秒前
平常映雁完成签到,获得积分10
32秒前
32秒前
共享精神应助精明的冥幽采纳,获得10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136744
求助须知:如何正确求助?哪些是违规求助? 2787759
关于积分的说明 7783069
捐赠科研通 2443822
什么是DOI,文献DOI怎么找? 1299439
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954