0302 Sleep Staging Classification from Wearable Signals Using Deep Learning

可穿戴计算机 睡眠(系统调用) 多导睡眠图 人工智能 睡眠阶段 计算机科学 医学 物理医学与康复 心理学 听力学 机器学习 脑电图 神经科学 嵌入式系统 操作系统
作者
Conor Heneghan,Ryan Gillard,Logan Niehaus,Logan Schneider,Marius Guerard
出处
期刊:Sleep [Oxford University Press]
卷期号:47 (Supplement_1): A130-A130
标识
DOI:10.1093/sleep/zsae067.0302
摘要

Abstract Introduction Typical data derived from a wrist worn device include accelerometer and photoplethysmogram (PPG) sensor signals . These reflect underlying movement, heart rate, and vascular dynamics that contain sleep stage information. We investigated the ability of a deep learning network to map raw data from such sensors to estimated sleep stages defined by full polysomnography scoring. Methods A convolutional neural network (CNN) was proposed for application to raw PPG (green light at 25 Hz) and 3D accelerometer data (also sampled at 25 Hz). The CNN had 70 hidden layers and output labels were mapped to four classes (wake, light sleep, deep sleep, and REM sleep) where light sleep is defined as Stages N1 and N2. The CNN was pretrained using 1654 records of finger PPG data from the Multi-Ethnic Study of Atherosclerosis (MESA) sleep records. The system was then further trained and evaluated on an internal set of 184 records obtained from adults (mean age = 68) with corresponding scored PSG sleep stage labels. Data augmentation techniques were used to create additional training data. The system was then tested using a withheld data set of 16 records. The overall performance of the system was evaluated by calculating two stage (wake versus sleep) and four stage accuracy and Cohen’s kappa values (𝜅). Results The overall performance for two-stage wake/sleep classification was an accuracy of 0.94 and 𝜅=0.79. For four stage classification, the accuracy was 0.79 and 𝜅=0.66. A comparable figure for expert human scoring four-stage class is accuracy of 0.8-0.85 and 𝜅=0.7-0.75. Conclusion Raw accelerometer and PPG signals contain a significant amount of information related to underlying sleep stages, and can be trained to produce hypnograms which approach the accuracy of human scorers. This may provide utility for both multi-night clinical use and underlying research in sleep science. Support (if any) This research was funded by Google Inc.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Eason完成签到,获得积分10
1秒前
Lanyx发布了新的文献求助10
3秒前
充电宝应助杜琦采纳,获得10
3秒前
Platinum完成签到,获得积分10
3秒前
猪猪侠发布了新的文献求助10
4秒前
5秒前
Felix发布了新的文献求助10
5秒前
anonymous发布了新的文献求助10
5秒前
anasy发布了新的文献求助10
8秒前
疯狂的向日葵完成签到,获得积分10
9秒前
LFH关注了科研通微信公众号
9秒前
大鱼完成签到,获得积分10
10秒前
小乐儿~完成签到,获得积分10
10秒前
quora发布了新的文献求助10
16秒前
丛士乔完成签到,获得积分10
17秒前
17秒前
18秒前
必发文章完成签到,获得积分10
19秒前
22秒前
dique3hao发布了新的文献求助10
22秒前
杜琦发布了新的文献求助10
23秒前
Ava应助鸿鲤采纳,获得10
24秒前
易旸完成签到,获得积分10
24秒前
24秒前
24秒前
24秒前
LFH发布了新的文献求助10
25秒前
汉堡包应助AA采纳,获得10
27秒前
罗浩楠完成签到,获得积分10
27秒前
caicai发布了新的文献求助10
27秒前
巫马尔槐完成签到,获得积分10
28秒前
zz发布了新的文献求助10
30秒前
必发文章发布了新的文献求助10
31秒前
caicai完成签到,获得积分10
33秒前
34秒前
35秒前
朴素的月光完成签到,获得积分10
35秒前
杜琦完成签到,获得积分10
36秒前
suyu发布了新的文献求助10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967872
求助须知:如何正确求助?哪些是违规求助? 3512982
关于积分的说明 11165825
捐赠科研通 3248059
什么是DOI,文献DOI怎么找? 1794090
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578