0302 Sleep Staging Classification from Wearable Signals Using Deep Learning

可穿戴计算机 睡眠(系统调用) 多导睡眠图 人工智能 睡眠阶段 计算机科学 医学 物理医学与康复 心理学 听力学 机器学习 脑电图 神经科学 嵌入式系统 操作系统
作者
Conor Heneghan,Ryan Gillard,Logan Niehaus,Logan Schneider,Marius Guerard
出处
期刊:Sleep [Oxford University Press]
卷期号:47 (Supplement_1): A130-A130
标识
DOI:10.1093/sleep/zsae067.0302
摘要

Abstract Introduction Typical data derived from a wrist worn device include accelerometer and photoplethysmogram (PPG) sensor signals . These reflect underlying movement, heart rate, and vascular dynamics that contain sleep stage information. We investigated the ability of a deep learning network to map raw data from such sensors to estimated sleep stages defined by full polysomnography scoring. Methods A convolutional neural network (CNN) was proposed for application to raw PPG (green light at 25 Hz) and 3D accelerometer data (also sampled at 25 Hz). The CNN had 70 hidden layers and output labels were mapped to four classes (wake, light sleep, deep sleep, and REM sleep) where light sleep is defined as Stages N1 and N2. The CNN was pretrained using 1654 records of finger PPG data from the Multi-Ethnic Study of Atherosclerosis (MESA) sleep records. The system was then further trained and evaluated on an internal set of 184 records obtained from adults (mean age = 68) with corresponding scored PSG sleep stage labels. Data augmentation techniques were used to create additional training data. The system was then tested using a withheld data set of 16 records. The overall performance of the system was evaluated by calculating two stage (wake versus sleep) and four stage accuracy and Cohen’s kappa values (𝜅). Results The overall performance for two-stage wake/sleep classification was an accuracy of 0.94 and 𝜅=0.79. For four stage classification, the accuracy was 0.79 and 𝜅=0.66. A comparable figure for expert human scoring four-stage class is accuracy of 0.8-0.85 and 𝜅=0.7-0.75. Conclusion Raw accelerometer and PPG signals contain a significant amount of information related to underlying sleep stages, and can be trained to produce hypnograms which approach the accuracy of human scorers. This may provide utility for both multi-night clinical use and underlying research in sleep science. Support (if any) This research was funded by Google Inc.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助小巧十三采纳,获得10
刚刚
ll发布了新的文献求助10
1秒前
liia发布了新的文献求助10
2秒前
BJUTyang发布了新的文献求助10
3秒前
海绵宝宝完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助150
4秒前
发发发完成签到,获得积分10
8秒前
123完成签到,获得积分10
9秒前
9秒前
jiajiajia完成签到,获得积分20
9秒前
英姑应助LucyMartinez采纳,获得10
10秒前
葛儿完成签到 ,获得积分10
12秒前
小巧十三完成签到,获得积分10
13秒前
liia完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
李爱国应助戴明琪采纳,获得30
19秒前
20秒前
灰机灰机完成签到,获得积分10
20秒前
oahcchao完成签到,获得积分10
23秒前
25秒前
Zehn发布了新的文献求助10
27秒前
深情安青应助irisjlj采纳,获得10
28秒前
可爱的函函应助探索小新采纳,获得10
30秒前
30秒前
无花果应助Zehn采纳,获得10
31秒前
xsy完成签到 ,获得积分10
33秒前
caoxiwei发布了新的文献求助10
34秒前
量子星尘发布了新的文献求助10
35秒前
37秒前
39秒前
40秒前
40秒前
踏实映天完成签到 ,获得积分10
40秒前
冰之完成签到,获得积分10
42秒前
MHY完成签到,获得积分20
43秒前
44秒前
44秒前
vivianfou发布了新的文献求助10
45秒前
大春发布了新的文献求助10
45秒前
111发布了新的文献求助10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883546
求助须知:如何正确求助?哪些是违规求助? 4169043
关于积分的说明 12935786
捐赠科研通 3929327
什么是DOI,文献DOI怎么找? 2156096
邀请新用户注册赠送积分活动 1174515
关于科研通互助平台的介绍 1079202