清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Differentiation of Malignancy and Idiopathic Granulomatous Mastitis Presenting as Non-mass Lesions on MRI: Radiological, Clinical, Radiomics, and Clinical-Radiomics Models

无线电技术 医学 恶性肿瘤 肉芽肿性乳腺炎 放射性武器 放射科 磁共振成像 病理 乳腺炎
作者
Yasemin Kayadibi,Mehmet Sakıpcan Saracoglu,Seda Aladağ Kurt,Enes Deger,Fatma Nur Soylu Boy,Neşe Uçar,Gül Esen
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (9): 3511-3523 被引量:7
标识
DOI:10.1016/j.acra.2024.03.025
摘要

Rationale and Objectives

To investigate the effectiveness of machine learning-based clinical, radiomics, and combined models in differentiating idiopathic granulomatous mastitis (IGM) from malignancy, both presenting as non-mass enhancement (NME) lesions on magnetic resonance imaging (MRI), and to compare these models with radiological evaluation.

Material and methods

A total of 178 patients (69 IGM and 109 breast cancer patients) with NME on breast MRI evaluated between March 2018 and April 2022, were included in this two-center study. Age, skin changes, presence of fistula, and abscess were recorded from hospital records. Two experienced radiologists evaluated MRI images according to the breast imaging reporting and data system 2013 lexicon. Lesions were segmented independently on T2-weighted, apparent diffusion coefficient, and post-contrast-T1-weighted sequences. Data were split into training and external testing sets. Machine learning models were built using Light GBM (light gradient-boosting machine). Radiological, clinical, radiomics, and clinical-radiomics models were created and compared. Decision curve analysis was performed. Quality of reporting and that of methodology were evaluated using CLEAR and METRICS tools.

Results

IGM group was younger (p = 0.014). Abscesses (p < 0.001), fistulas (p < 0.001), and skin changes (p < 0.001) were significantly more common in the IGM group. No significant difference was detected in terms of lesion size (p = 0.213). In the evaluation of NME, the lowest performance belonged to the radiologists' evaluation (AUC for training, 0.740; for testing, 0.737), while the highest AUC was achieved by the model developed by combined clinical and radiomics features (AUC for training, 0.979; for testing, 0.942).

Conclusion

Our study has shown that the machine learning-based clinical-radiomics model might have the potential to accurately discriminate IGM and malignant lesions in evaluating NME areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
僵尸吃掉了我的脑子完成签到 ,获得积分10
21秒前
萝卜猪完成签到,获得积分10
30秒前
cccchang完成签到,获得积分20
35秒前
1分钟前
1分钟前
1分钟前
1分钟前
YXY完成签到 ,获得积分10
1分钟前
激动的似狮完成签到,获得积分10
2分钟前
科科研研up完成签到,获得积分10
2分钟前
2分钟前
LeoBigman完成签到 ,获得积分10
3分钟前
tt完成签到,获得积分10
3分钟前
zzh完成签到,获得积分20
3分钟前
001完成签到,获得积分0
3分钟前
gtgyh完成签到 ,获得积分10
4分钟前
涛1完成签到 ,获得积分10
4分钟前
害怕的恶天完成签到,获得积分10
4分钟前
sunwsmile完成签到 ,获得积分10
4分钟前
田様应助科研通管家采纳,获得10
4分钟前
4分钟前
oleskarabach发布了新的文献求助10
4分钟前
gqw3505完成签到,获得积分10
4分钟前
在水一方完成签到,获得积分0
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
隐形曼青应助zzh采纳,获得10
5分钟前
cjn发布了新的文献求助10
5分钟前
5分钟前
zzh发布了新的文献求助10
5分钟前
Hiraeth完成签到 ,获得积分10
7分钟前
yyds完成签到,获得积分0
7分钟前
睡够了不困完成签到,获得积分10
7分钟前
汪鸡毛完成签到 ,获得积分10
7分钟前
Harrison完成签到,获得积分10
7分钟前
Harrison发布了新的文献求助10
7分钟前
小亮完成签到 ,获得积分10
8分钟前
gszy1975完成签到,获得积分10
9分钟前
Alisha完成签到,获得积分10
9分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450132
求助须知:如何正确求助?哪些是违规求助? 4558026
关于积分的说明 14265309
捐赠科研通 4481397
什么是DOI,文献DOI怎么找? 2454792
邀请新用户注册赠送积分活动 1445571
关于科研通互助平台的介绍 1421511