Differentiation of Malignancy and Idiopathic Granulomatous Mastitis Presenting as Non-mass Lesions on MRI: Radiological, Clinical, Radiomics, and Clinical-Radiomics Models

无线电技术 医学 恶性肿瘤 肉芽肿性乳腺炎 放射性武器 放射科 磁共振成像 病理 乳腺炎
作者
Yasemin Kayadibi,Mehmet Sakıpcan Saracoglu,Seda Aladağ Kurt,Enes Deger,Fatma Nur Soylu Boy,Neşe Uçar,Gül Esen
出处
期刊:Academic Radiology [Elsevier]
被引量:1
标识
DOI:10.1016/j.acra.2024.03.025
摘要

Rationale and Objectives

To investigate the effectiveness of machine learning-based clinical, radiomics, and combined models in differentiating idiopathic granulomatous mastitis (IGM) from malignancy, both presenting as non-mass enhancement (NME) lesions on magnetic resonance imaging (MRI), and to compare these models with radiological evaluation.

Material and methods

A total of 178 patients (69 IGM and 109 breast cancer patients) with NME on breast MRI evaluated between March 2018 and April 2022, were included in this two-center study. Age, skin changes, presence of fistula, and abscess were recorded from hospital records. Two experienced radiologists evaluated MRI images according to the breast imaging reporting and data system 2013 lexicon. Lesions were segmented independently on T2-weighted, apparent diffusion coefficient, and post-contrast-T1-weighted sequences. Data were split into training and external testing sets. Machine learning models were built using Light GBM (light gradient-boosting machine). Radiological, clinical, radiomics, and clinical-radiomics models were created and compared. Decision curve analysis was performed. Quality of reporting and that of methodology were evaluated using CLEAR and METRICS tools.

Results

IGM group was younger (p = 0.014). Abscesses (p < 0.001), fistulas (p < 0.001), and skin changes (p < 0.001) were significantly more common in the IGM group. No significant difference was detected in terms of lesion size (p = 0.213). In the evaluation of NME, the lowest performance belonged to the radiologists' evaluation (AUC for training, 0.740; for testing, 0.737), while the highest AUC was achieved by the model developed by combined clinical and radiomics features (AUC for training, 0.979; for testing, 0.942).

Conclusion

Our study has shown that the machine learning-based clinical-radiomics model might have the potential to accurately discriminate IGM and malignant lesions in evaluating NME areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
爱学习的小凌完成签到,获得积分10
2秒前
汉堡包应助ZH采纳,获得10
2秒前
流苏完成签到,获得积分10
3秒前
略略略完成签到,获得积分10
4秒前
调研昵称发布了新的文献求助10
4秒前
5秒前
瑜瑜完成签到,获得积分20
5秒前
坚果完成签到 ,获得积分10
6秒前
科研通AI2S应助SX采纳,获得10
6秒前
Adian完成签到,获得积分10
7秒前
7秒前
天真吴邪完成签到,获得积分10
8秒前
9秒前
ppprotein完成签到,获得积分10
10秒前
李明发布了新的文献求助10
10秒前
桐桐应助ZH采纳,获得10
11秒前
花花世界J发布了新的文献求助10
11秒前
039Hc完成签到,获得积分10
12秒前
落尘完成签到,获得积分10
12秒前
Zzz完成签到,获得积分10
14秒前
飞快的珩完成签到,获得积分10
15秒前
想抱完成签到,获得积分10
16秒前
陈宝妮完成签到,获得积分10
17秒前
李巧儿发布了新的文献求助150
17秒前
阔达的梦秋完成签到,获得积分10
18秒前
小李叭叭完成签到,获得积分10
19秒前
852应助LIM采纳,获得10
19秒前
槐序零玖完成签到,获得积分10
21秒前
万能图书馆应助李明采纳,获得10
23秒前
李巧儿完成签到,获得积分10
25秒前
26秒前
caffeine完成签到,获得积分10
28秒前
Yogita完成签到,获得积分10
29秒前
蛋壳柯发布了新的文献求助10
29秒前
笑点低的凝阳完成签到,获得积分10
30秒前
雨恋凡尘完成签到,获得积分10
30秒前
Explorer3号完成签到,获得积分10
30秒前
LIXI发布了新的文献求助10
31秒前
CipherSage应助正直花生采纳,获得10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137115
求助须知:如何正确求助?哪些是违规求助? 2788133
关于积分的说明 7784741
捐赠科研通 2444121
什么是DOI,文献DOI怎么找? 1299763
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011