Differentiation of Malignancy and Idiopathic Granulomatous Mastitis Presenting as Non-mass Lesions on MRI: Radiological, Clinical, Radiomics, and Clinical-Radiomics Models

无线电技术 医学 恶性肿瘤 肉芽肿性乳腺炎 放射性武器 放射科 磁共振成像 病理 乳腺炎
作者
Yasemin Kayadibi,Mehmet Sakıpcan Saracoglu,Seda Aladağ Kurt,Enes Deger,Fatma Nur Soylu Boy,Neşe Uçar,Gül Esen
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (9): 3511-3523 被引量:9
标识
DOI:10.1016/j.acra.2024.03.025
摘要

Rationale and Objectives

To investigate the effectiveness of machine learning-based clinical, radiomics, and combined models in differentiating idiopathic granulomatous mastitis (IGM) from malignancy, both presenting as non-mass enhancement (NME) lesions on magnetic resonance imaging (MRI), and to compare these models with radiological evaluation.

Material and methods

A total of 178 patients (69 IGM and 109 breast cancer patients) with NME on breast MRI evaluated between March 2018 and April 2022, were included in this two-center study. Age, skin changes, presence of fistula, and abscess were recorded from hospital records. Two experienced radiologists evaluated MRI images according to the breast imaging reporting and data system 2013 lexicon. Lesions were segmented independently on T2-weighted, apparent diffusion coefficient, and post-contrast-T1-weighted sequences. Data were split into training and external testing sets. Machine learning models were built using Light GBM (light gradient-boosting machine). Radiological, clinical, radiomics, and clinical-radiomics models were created and compared. Decision curve analysis was performed. Quality of reporting and that of methodology were evaluated using CLEAR and METRICS tools.

Results

IGM group was younger (p = 0.014). Abscesses (p < 0.001), fistulas (p < 0.001), and skin changes (p < 0.001) were significantly more common in the IGM group. No significant difference was detected in terms of lesion size (p = 0.213). In the evaluation of NME, the lowest performance belonged to the radiologists' evaluation (AUC for training, 0.740; for testing, 0.737), while the highest AUC was achieved by the model developed by combined clinical and radiomics features (AUC for training, 0.979; for testing, 0.942).

Conclusion

Our study has shown that the machine learning-based clinical-radiomics model might have the potential to accurately discriminate IGM and malignant lesions in evaluating NME areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
茹茹发布了新的文献求助10
2秒前
一号位完成签到,获得积分20
2秒前
聆听发布了新的文献求助10
2秒前
2秒前
能干彤完成签到,获得积分10
3秒前
越旻发布了新的文献求助10
5秒前
下次一定发布了新的文献求助10
5秒前
6秒前
laifeihong发布了新的文献求助50
7秒前
Jessica完成签到,获得积分0
7秒前
量子星尘发布了新的文献求助10
7秒前
出其东门完成签到,获得积分10
7秒前
核动力驴应助霍元甲采纳,获得10
8秒前
上官若男应助霍元甲采纳,获得10
8秒前
Mida应助开花不铁树采纳,获得10
11秒前
打打应助chemlink采纳,获得10
14秒前
14秒前
鱻雩关注了科研通微信公众号
16秒前
细心的思远完成签到,获得积分20
17秒前
爆米花应助ap2010采纳,获得30
17秒前
19秒前
19秒前
李健的小迷弟应助isabellae采纳,获得10
19秒前
开花不铁树完成签到,获得积分20
20秒前
21秒前
852应助鸡蛋灌饼与掉渣饼采纳,获得10
21秒前
21秒前
22秒前
Criminology34应助二五九采纳,获得10
24秒前
晚星发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
26秒前
星空发布了新的文献求助10
29秒前
文献发布了新的文献求助30
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690