Differentiation of Malignancy and Idiopathic Granulomatous Mastitis Presenting as Non-mass Lesions on MRI: Radiological, Clinical, Radiomics, and Clinical-Radiomics Models

无线电技术 医学 恶性肿瘤 肉芽肿性乳腺炎 放射性武器 放射科 磁共振成像 病理 乳腺炎
作者
Yasemin Kayadibi,Mehmet Sakıpcan Saracoglu,Seda Aladağ Kurt,Enes Deger,Fatma Nur Soylu Boy,Neşe Uçar,Gül Esen
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (9): 3511-3523 被引量:6
标识
DOI:10.1016/j.acra.2024.03.025
摘要

Rationale and Objectives

To investigate the effectiveness of machine learning-based clinical, radiomics, and combined models in differentiating idiopathic granulomatous mastitis (IGM) from malignancy, both presenting as non-mass enhancement (NME) lesions on magnetic resonance imaging (MRI), and to compare these models with radiological evaluation.

Material and methods

A total of 178 patients (69 IGM and 109 breast cancer patients) with NME on breast MRI evaluated between March 2018 and April 2022, were included in this two-center study. Age, skin changes, presence of fistula, and abscess were recorded from hospital records. Two experienced radiologists evaluated MRI images according to the breast imaging reporting and data system 2013 lexicon. Lesions were segmented independently on T2-weighted, apparent diffusion coefficient, and post-contrast-T1-weighted sequences. Data were split into training and external testing sets. Machine learning models were built using Light GBM (light gradient-boosting machine). Radiological, clinical, radiomics, and clinical-radiomics models were created and compared. Decision curve analysis was performed. Quality of reporting and that of methodology were evaluated using CLEAR and METRICS tools.

Results

IGM group was younger (p = 0.014). Abscesses (p < 0.001), fistulas (p < 0.001), and skin changes (p < 0.001) were significantly more common in the IGM group. No significant difference was detected in terms of lesion size (p = 0.213). In the evaluation of NME, the lowest performance belonged to the radiologists' evaluation (AUC for training, 0.740; for testing, 0.737), while the highest AUC was achieved by the model developed by combined clinical and radiomics features (AUC for training, 0.979; for testing, 0.942).

Conclusion

Our study has shown that the machine learning-based clinical-radiomics model might have the potential to accurately discriminate IGM and malignant lesions in evaluating NME areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ENIX完成签到 ,获得积分10
刚刚
111发布了新的文献求助10
1秒前
斯文败类应助彩色一手采纳,获得10
4秒前
王腾飞关注了科研通微信公众号
4秒前
姚芭蕉发布了新的文献求助10
4秒前
4秒前
卢雨生发布了新的文献求助10
5秒前
人文完成签到,获得积分10
6秒前
JamesPei应助菠菜采纳,获得10
6秒前
司马千筹发布了新的文献求助10
7秒前
7秒前
李健的小迷弟应助xhs12138采纳,获得30
8秒前
猪猪侠完成签到,获得积分10
10秒前
我是站长才怪完成签到,获得积分0
10秒前
伊吹风子发布了新的文献求助10
11秒前
13秒前
充电宝应助司马千筹采纳,获得10
14秒前
14秒前
ED应助liu采纳,获得10
15秒前
16秒前
whitekitten完成签到,获得积分10
16秒前
阿震完成签到,获得积分10
17秒前
精明觅山发布了新的文献求助10
18秒前
王腾飞发布了新的文献求助10
18秒前
20秒前
LLLxy完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
long完成签到 ,获得积分10
21秒前
禾风完成签到,获得积分10
22秒前
打打应助Yy采纳,获得10
22秒前
司马千筹完成签到,获得积分10
23秒前
new发布了新的文献求助10
23秒前
科研通AI2S应助活泼的梨愁采纳,获得10
24秒前
26秒前
lili完成签到,获得积分10
27秒前
LLLxy发布了新的文献求助20
30秒前
打打应助奔波儿灞采纳,获得10
31秒前
鑫鑫发布了新的文献求助10
32秒前
童话艺术佳完成签到,获得积分10
32秒前
咿呀呀嘿哟完成签到 ,获得积分10
34秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010512
求助须知:如何正确求助?哪些是违规求助? 3550312
关于积分的说明 11305427
捐赠科研通 3284689
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499