Differentiation of Malignancy and Idiopathic Granulomatous Mastitis Presenting as Non-mass Lesions on MRI: Radiological, Clinical, Radiomics, and Clinical-Radiomics Models

无线电技术 医学 恶性肿瘤 肉芽肿性乳腺炎 放射性武器 放射科 磁共振成像 病理 乳腺炎
作者
Yasemin Kayadibi,Mehmet Sakıpcan Saracoglu,Seda Aladağ Kurt,Enes Deger,Fatma Nur Soylu Boy,Neşe Uçar,Gül Esen
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (9): 3511-3523 被引量:9
标识
DOI:10.1016/j.acra.2024.03.025
摘要

Rationale and Objectives

To investigate the effectiveness of machine learning-based clinical, radiomics, and combined models in differentiating idiopathic granulomatous mastitis (IGM) from malignancy, both presenting as non-mass enhancement (NME) lesions on magnetic resonance imaging (MRI), and to compare these models with radiological evaluation.

Material and methods

A total of 178 patients (69 IGM and 109 breast cancer patients) with NME on breast MRI evaluated between March 2018 and April 2022, were included in this two-center study. Age, skin changes, presence of fistula, and abscess were recorded from hospital records. Two experienced radiologists evaluated MRI images according to the breast imaging reporting and data system 2013 lexicon. Lesions were segmented independently on T2-weighted, apparent diffusion coefficient, and post-contrast-T1-weighted sequences. Data were split into training and external testing sets. Machine learning models were built using Light GBM (light gradient-boosting machine). Radiological, clinical, radiomics, and clinical-radiomics models were created and compared. Decision curve analysis was performed. Quality of reporting and that of methodology were evaluated using CLEAR and METRICS tools.

Results

IGM group was younger (p = 0.014). Abscesses (p < 0.001), fistulas (p < 0.001), and skin changes (p < 0.001) were significantly more common in the IGM group. No significant difference was detected in terms of lesion size (p = 0.213). In the evaluation of NME, the lowest performance belonged to the radiologists' evaluation (AUC for training, 0.740; for testing, 0.737), while the highest AUC was achieved by the model developed by combined clinical and radiomics features (AUC for training, 0.979; for testing, 0.942).

Conclusion

Our study has shown that the machine learning-based clinical-radiomics model might have the potential to accurately discriminate IGM and malignant lesions in evaluating NME areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
壮观的静芙完成签到 ,获得积分10
刚刚
ccm应助zzz采纳,获得10
1秒前
123发布了新的文献求助10
2秒前
4秒前
asdfzxcv应助小giao吃不饱采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
初雪发布了新的文献求助10
7秒前
路宇鹏完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
天天快乐应助薛飞采纳,获得10
10秒前
li发布了新的文献求助10
10秒前
10秒前
Return发布了新的文献求助10
11秒前
cjh发布了新的文献求助10
11秒前
11秒前
鲤鱼水桃发布了新的文献求助10
11秒前
友好安白发布了新的文献求助10
13秒前
小马甲应助笑点低雨筠采纳,获得10
14秒前
行走人生发布了新的文献求助30
14秒前
喵喵完成签到 ,获得积分10
14秒前
Dy发布了新的文献求助10
14秒前
小鬼发布了新的文献求助10
15秒前
勤奋的缘郡完成签到,获得积分10
16秒前
994发布了新的文献求助10
16秒前
李健的小迷弟应助ZNX采纳,获得10
16秒前
17秒前
小蘑菇应助jovrtic采纳,获得10
17秒前
饱满以松完成签到 ,获得积分10
17秒前
20秒前
深情安青应助Scarlett采纳,获得10
21秒前
24秒前
小giao吃不饱完成签到,获得积分10
25秒前
25秒前
Lucas应助腼腆的月亮采纳,获得10
25秒前
红火完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649914
求助须知:如何正确求助?哪些是违规求助? 4779409
关于积分的说明 15050588
捐赠科研通 4808829
什么是DOI,文献DOI怎么找? 2571871
邀请新用户注册赠送积分活动 1528143
关于科研通互助平台的介绍 1486917