Topology optimization structure design of shape memory alloy with multiple constraints

拓扑优化 形状记忆合金 拓扑(电路) 合金 计算机科学 数学优化 材料科学 数学 结构工程 工程类 人工智能 复合材料 有限元法 组合数学
作者
Xingkun Dong,Xiangjun Jiang,Peng Li,Tao Niu,Yaoqi Wang,Jiahuan Zhang
出处
期刊:Journal of Intelligent Material Systems and Structures [SAGE]
卷期号:35 (10): 892-906 被引量:2
标识
DOI:10.1177/1045389x241237581
摘要

As an emerging functional material, shape memory alloy (SMA) exhibits remarkable mechanical properties and finds diverse applications across industries. This paper presents a topology optimization framework based on the bi-directional evolutionary structural optimization (BESO) method for designing SMA structures, which maximizes structural stiffness under multiple constraints of specified volume fraction, displacement, and fundamental frequency. A phenomenological constitutive model is utilized to simulate the mechanical behavior of SMA accurately. The unit virtual load method is employed to determine sensitivities. Several optimized SMA beam structures and simply-supported cube structures are designed under different thermal-mechanical loads, and their displacement, mean compliance, and fundamental frequency are evaluated throughout the optimization process. The results demonstrate that the proposed framework successfully customizes the SMA topology structure with adjustable displacement and fundamental frequency, and the optimized schemes exhibit more considerable deformation and more uniform mechanical properties than their initial counterparts. The proposed framework has higher computational efficiency than the traditional SIMP-based SMA topology optimization design method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如此纠结完成签到,获得积分10
刚刚
多多就是小豆芽完成签到 ,获得积分10
1秒前
1秒前
Owen应助Lwxbb采纳,获得10
1秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
1秒前
小小杜完成签到,获得积分10
1秒前
初心完成签到,获得积分20
1秒前
丽丽完成签到 ,获得积分10
1秒前
学术蟑螂发布了新的文献求助10
1秒前
文艺的竺完成签到,获得积分10
2秒前
小林太郎应助斯奈克采纳,获得20
2秒前
2秒前
情怀应助执笔曦倾年采纳,获得10
2秒前
2秒前
2秒前
2秒前
科研民工完成签到,获得积分10
3秒前
FR完成签到,获得积分10
3秒前
4秒前
小马甲应助浩浩大人采纳,获得10
4秒前
4秒前
小小杜发布了新的文献求助20
4秒前
打打应助袁国惠采纳,获得10
4秒前
4秒前
哈哈哈完成签到,获得积分10
5秒前
小张发布了新的文献求助10
5秒前
温柔若完成签到,获得积分10
5秒前
称心的问薇完成签到,获得积分10
6秒前
6秒前
高兴的半凡完成签到 ,获得积分10
7秒前
123完成签到,获得积分10
7秒前
Answer完成签到,获得积分10
7秒前
诚心凝旋发布了新的文献求助10
7秒前
孟柠柠完成签到,获得积分10
8秒前
8秒前
哈哈哈发布了新的文献求助10
8秒前
SYLH应助di采纳,获得10
9秒前
韭菜盒子完成签到,获得积分20
9秒前
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740