清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Integration of nontarget analysis with machine learning modeling for prioritization of odorous volatile organic compounds in surface water

气味 优先次序 水质 Geosmin公司 环境化学 壬醛 环境科学 化学 鉴定(生物学) 色谱法 生态学 工程类 有机化学 管理科学 生物
作者
Yuanxi Huang,Lingjun Bu,Shumin Zhu,Shiqing Zhou
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:471: 134367-134367
标识
DOI:10.1016/j.jhazmat.2024.134367
摘要

Assessing the odor risk caused by volatile organic compounds (VOCs) in water has been a big challenge for water quality evaluation due to the abundance of odorants in water and the inherent difficulty in obtaining the corresponding odor sensory attributes. Here, a novel odor risk assessment approach has been established, incorporating nontarget screening for odorous VOC identification and machine learning (ML) modeling for odor threshold prediction. Twenty-nine odorous VOCs were identified using two-dimensional gas chromatography-time of flight mass spectrometry from four surface water sampling sites. These identified odorants primarily fell into the categories of ketones and ethers, and originated mainly from biological production. To obtain the odor threshold of these odorants, we trained an ML model for odor threshold prediction, which displayed good performance with accuracy of 79%. Further, an odor threshold-based prioritization approach was developed to rank the identified odorants. 2-Methylisoborneol and nonanal were identified as the main odorants contributing to water odor issues at the four sampling sites. This study provides an accessible method for accurate and quick determination of key odorants in source water, aiding in odor control and improved water quality management. Water odor episodes have been persistent and significant issues worldwide, posing severe challenges to water treatment plants. Unpleasant odors in aquatic environments are predominantly caused by the occurrence of a wide range of volatile organic chemicals (VOCs). Given the vast number of newly-detected VOCs, experimental identification of the key odorants becomes difficult, making water odor issues complex to control. Herein, we propose a novel approach integrating nontarget analysis with machine learning models to accurate and quick determine the key odorants in waterbodies. We use the approach to analyze four samples with odor issues in Changsha, and prioritized the potential odorants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
郑琦敏钰完成签到 ,获得积分10
7秒前
9秒前
立行完成签到 ,获得积分10
11秒前
18秒前
21秒前
XD824发布了新的文献求助10
22秒前
优雅的WAN完成签到 ,获得积分10
34秒前
35秒前
热情的橙汁完成签到,获得积分10
39秒前
41秒前
个性的紫菜应助hugeyoung采纳,获得30
41秒前
靓丽宛亦完成签到 ,获得积分10
46秒前
hugeyoung完成签到,获得积分10
50秒前
52秒前
萝卜猪完成签到,获得积分10
56秒前
1分钟前
1分钟前
Wen完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
LMW应助lee采纳,获得10
2分钟前
XD824发布了新的文献求助10
2分钟前
sfjww发布了新的文献求助30
2分钟前
中恐完成签到,获得积分0
2分钟前
2分钟前
xun应助lee采纳,获得30
2分钟前
浚稚完成签到 ,获得积分10
2分钟前
2分钟前
Ava应助如沐春风采纳,获得10
2分钟前
ffff完成签到,获得积分10
2分钟前
3分钟前
3分钟前
如沐春风完成签到,获得积分10
3分钟前
3分钟前
如沐春风发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596743
求助须知:如何正确求助?哪些是违规求助? 4008546
关于积分的说明 12409321
捐赠科研通 3687625
什么是DOI,文献DOI怎么找? 2032568
邀请新用户注册赠送积分活动 1065806
科研通“疑难数据库(出版商)”最低求助积分说明 951098