Integration of nontarget analysis with machine learning modeling for prioritization of odorous volatile organic compounds in surface water

气味 优先次序 水质 Geosmin公司 环境化学 壬醛 环境科学 化学 鉴定(生物学) 色谱法 生态学 工程类 有机化学 管理科学 生物
作者
Yuanxi Huang,Lingjun Bu,Shumin Zhu,Shiqing Zhou
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:471: 134367-134367
标识
DOI:10.1016/j.jhazmat.2024.134367
摘要

Assessing the odor risk caused by volatile organic compounds (VOCs) in water has been a big challenge for water quality evaluation due to the abundance of odorants in water and the inherent difficulty in obtaining the corresponding odor sensory attributes. Here, a novel odor risk assessment approach has been established, incorporating nontarget screening for odorous VOC identification and machine learning (ML) modeling for odor threshold prediction. Twenty-nine odorous VOCs were identified using two-dimensional gas chromatography-time of flight mass spectrometry from four surface water sampling sites. These identified odorants primarily fell into the categories of ketones and ethers, and originated mainly from biological production. To obtain the odor threshold of these odorants, we trained an ML model for odor threshold prediction, which displayed good performance with accuracy of 79%. Further, an odor threshold-based prioritization approach was developed to rank the identified odorants. 2-Methylisoborneol and nonanal were identified as the main odorants contributing to water odor issues at the four sampling sites. This study provides an accessible method for accurate and quick determination of key odorants in source water, aiding in odor control and improved water quality management. Water odor episodes have been persistent and significant issues worldwide, posing severe challenges to water treatment plants. Unpleasant odors in aquatic environments are predominantly caused by the occurrence of a wide range of volatile organic chemicals (VOCs). Given the vast number of newly-detected VOCs, experimental identification of the key odorants becomes difficult, making water odor issues complex to control. Herein, we propose a novel approach integrating nontarget analysis with machine learning models to accurate and quick determine the key odorants in waterbodies. We use the approach to analyze four samples with odor issues in Changsha, and prioritized the potential odorants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蒸馏水完成签到,获得积分10
1秒前
1秒前
1秒前
天天快乐应助冷艳的海豚采纳,获得10
1秒前
上官若男应助987654采纳,获得10
2秒前
2秒前
谨慎的豆芽完成签到 ,获得积分10
2秒前
皓月星辰完成签到,获得积分10
2秒前
家向松完成签到,获得积分10
3秒前
如意纸鹤完成签到 ,获得积分10
3秒前
AU完成签到,获得积分20
4秒前
小迷糊完成签到,获得积分10
4秒前
miki完成签到,获得积分10
5秒前
妮妮完成签到 ,获得积分10
5秒前
李铎发布了新的文献求助10
5秒前
夏青荷发布了新的文献求助10
6秒前
小周完成签到,获得积分10
6秒前
7秒前
雍州小铁匠完成签到 ,获得积分10
7秒前
8秒前
8秒前
ppp完成签到,获得积分10
8秒前
快乐小菜瓜完成签到 ,获得积分10
8秒前
WWXWWX应助helitrope采纳,获得10
9秒前
lxlcx发布了新的文献求助10
9秒前
搜集达人应助wjw采纳,获得10
10秒前
10秒前
拼搏的盼山完成签到,获得积分10
11秒前
regina完成签到,获得积分10
11秒前
杨志坚完成签到 ,获得积分10
11秒前
panaxing完成签到,获得积分10
11秒前
十三完成签到 ,获得积分10
11秒前
lalala发布了新的文献求助10
12秒前
12秒前
李超完成签到,获得积分10
12秒前
A溶大美噶完成签到,获得积分10
12秒前
optical完成签到,获得积分10
12秒前
李李李发布了新的文献求助10
13秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134170
求助须知:如何正确求助?哪些是违规求助? 2785077
关于积分的说明 7769993
捐赠科研通 2440590
什么是DOI,文献DOI怎么找? 1297488
科研通“疑难数据库(出版商)”最低求助积分说明 624971
版权声明 600792