Integration of nontarget analysis with machine learning modeling for prioritization of odorous volatile organic compounds in surface water

气味 优先次序 水质 Geosmin公司 环境化学 壬醛 环境科学 化学 鉴定(生物学) 色谱法 生态学 工程类 有机化学 管理科学 生物
作者
Yuanxi Huang,Lingjun Bu,Shumin Zhu,Shiqing Zhou
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:471: 134367-134367
标识
DOI:10.1016/j.jhazmat.2024.134367
摘要

Assessing the odor risk caused by volatile organic compounds (VOCs) in water has been a big challenge for water quality evaluation due to the abundance of odorants in water and the inherent difficulty in obtaining the corresponding odor sensory attributes. Here, a novel odor risk assessment approach has been established, incorporating nontarget screening for odorous VOC identification and machine learning (ML) modeling for odor threshold prediction. Twenty-nine odorous VOCs were identified using two-dimensional gas chromatography-time of flight mass spectrometry from four surface water sampling sites. These identified odorants primarily fell into the categories of ketones and ethers, and originated mainly from biological production. To obtain the odor threshold of these odorants, we trained an ML model for odor threshold prediction, which displayed good performance with accuracy of 79%. Further, an odor threshold-based prioritization approach was developed to rank the identified odorants. 2-Methylisoborneol and nonanal were identified as the main odorants contributing to water odor issues at the four sampling sites. This study provides an accessible method for accurate and quick determination of key odorants in source water, aiding in odor control and improved water quality management. Water odor episodes have been persistent and significant issues worldwide, posing severe challenges to water treatment plants. Unpleasant odors in aquatic environments are predominantly caused by the occurrence of a wide range of volatile organic chemicals (VOCs). Given the vast number of newly-detected VOCs, experimental identification of the key odorants becomes difficult, making water odor issues complex to control. Herein, we propose a novel approach integrating nontarget analysis with machine learning models to accurate and quick determine the key odorants in waterbodies. We use the approach to analyze four samples with odor issues in Changsha, and prioritized the potential odorants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
易安发布了新的文献求助30
刚刚
ELend完成签到,获得积分10
1秒前
1秒前
Sun发布了新的文献求助10
1秒前
laowang完成签到,获得积分10
1秒前
fujun完成签到,获得积分10
2秒前
2秒前
zyx发布了新的文献求助10
2秒前
夜半发布了新的文献求助10
2秒前
2秒前
NexusExplorer应助DJ采纳,获得10
2秒前
莫燕梦完成签到,获得积分10
3秒前
4秒前
4秒前
YY完成签到 ,获得积分10
5秒前
Hepatology发布了新的文献求助10
5秒前
绿色的yu完成签到 ,获得积分10
5秒前
5秒前
fgjkl完成签到 ,获得积分10
6秒前
6秒前
7秒前
zyw完成签到,获得积分10
7秒前
7秒前
香蕉觅云应助岗岗采纳,获得10
7秒前
害羞安荷发布了新的文献求助30
7秒前
小飞侠完成签到,获得积分10
7秒前
海风发布了新的文献求助20
8秒前
9秒前
cool发布了新的文献求助10
10秒前
所所应助搞怪半烟采纳,获得10
10秒前
小汤圆发布了新的文献求助10
10秒前
10秒前
陈博士发布了新的文献求助10
10秒前
medlive2020完成签到,获得积分10
10秒前
11秒前
chenmeimei2012完成签到 ,获得积分10
11秒前
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650