Integration of nontarget analysis with machine learning modeling for prioritization of odorous volatile organic compounds in surface water

气味 优先次序 水质 Geosmin公司 环境化学 壬醛 环境科学 化学 鉴定(生物学) 色谱法 生态学 工程类 有机化学 管理科学 生物
作者
Yuanxi Huang,Lingjun Bu,Shumin Zhu,Shiqing Zhou
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:471: 134367-134367
标识
DOI:10.1016/j.jhazmat.2024.134367
摘要

Assessing the odor risk caused by volatile organic compounds (VOCs) in water has been a big challenge for water quality evaluation due to the abundance of odorants in water and the inherent difficulty in obtaining the corresponding odor sensory attributes. Here, a novel odor risk assessment approach has been established, incorporating nontarget screening for odorous VOC identification and machine learning (ML) modeling for odor threshold prediction. Twenty-nine odorous VOCs were identified using two-dimensional gas chromatography-time of flight mass spectrometry from four surface water sampling sites. These identified odorants primarily fell into the categories of ketones and ethers, and originated mainly from biological production. To obtain the odor threshold of these odorants, we trained an ML model for odor threshold prediction, which displayed good performance with accuracy of 79%. Further, an odor threshold-based prioritization approach was developed to rank the identified odorants. 2-Methylisoborneol and nonanal were identified as the main odorants contributing to water odor issues at the four sampling sites. This study provides an accessible method for accurate and quick determination of key odorants in source water, aiding in odor control and improved water quality management. Water odor episodes have been persistent and significant issues worldwide, posing severe challenges to water treatment plants. Unpleasant odors in aquatic environments are predominantly caused by the occurrence of a wide range of volatile organic chemicals (VOCs). Given the vast number of newly-detected VOCs, experimental identification of the key odorants becomes difficult, making water odor issues complex to control. Herein, we propose a novel approach integrating nontarget analysis with machine learning models to accurate and quick determine the key odorants in waterbodies. We use the approach to analyze four samples with odor issues in Changsha, and prioritized the potential odorants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
醉熏的菲鹰完成签到 ,获得积分10
1秒前
2秒前
orixero应助勤快的火腿肠采纳,获得10
2秒前
rita_sun1969发布了新的文献求助20
3秒前
令狐子轩完成签到,获得积分10
4秒前
顾矜应助自信书竹采纳,获得10
4秒前
莎拉波贰完成签到,获得积分10
6秒前
6秒前
小饭团子完成签到 ,获得积分10
7秒前
Puffkten完成签到 ,获得积分10
7秒前
liu完成签到,获得积分10
7秒前
8秒前
小大夫完成签到 ,获得积分10
8秒前
科研通AI6应助火星上立果采纳,获得10
8秒前
浮游应助鹏笑采纳,获得10
9秒前
zcl应助科研通管家采纳,获得150
12秒前
深情安青应助科研通管家采纳,获得10
12秒前
zhihui发布了新的文献求助10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
SSNN完成签到,获得积分10
12秒前
独特秋灵应助科研通管家采纳,获得50
12秒前
量子星尘发布了新的文献求助150
12秒前
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
zcl应助科研通管家采纳,获得150
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
幕帆应助科研通管家采纳,获得20
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
zcl应助科研通管家采纳,获得60
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
大个应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
zcl应助科研通管家采纳,获得150
13秒前
馆长应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
馆长应助科研通管家采纳,获得10
13秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142300
求助须知:如何正确求助?哪些是违规求助? 4340566
关于积分的说明 13517807
捐赠科研通 4180482
什么是DOI,文献DOI怎么找? 2292477
邀请新用户注册赠送积分活动 1293105
关于科研通互助平台的介绍 1235621