Antenna Modeling based on Meta-Heuristic Intelligent Algorithms and Neural Networks

计算机科学 元启发式 启发式 人工神经网络 人工智能 算法 机器学习
作者
Huang Ju,Jingchang Nan,Mingming Gao,Yifei Wang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:: 111623-111623 被引量:2
标识
DOI:10.1016/j.asoc.2024.111623
摘要

As wireless communication technology continues to advance, the antenna, as an essential front-end device in radio communication system, is surrounded by more and more complex electromagnetic wave environments with increasing variety, resulting in greater demand for antennas and higher design requirements. While the traditional antenna design methods suffered from the disadvantage of low design efficiency, a powerful tool for accelerating antenna design is the modelling of antennas with neural networks. Aiming to enhance the modeling accuracy of neural network, multiple novel meta-heuristic swarm intelligent algorithms are introduced and part of them are modified for the purpose of applying to optimizing network's weights and biases so as to raise the antenna model`s prediction precision on the basis of neural network. Specifically, the intelligent algorithms and their improvement directions include the strategy of optimizing weights and biases for neural networks with seagull optimization algorithm, optimizing the weights and biases of neural network with the improved butterfly algorithm fused with reverse learning, and the artificial rabbit algorithm optimizing the neural network weights and biases. In addition, two intelligent optimization algorithms that are already more mature: the particle swarm algorithm and the genetic algorithm are added to compare with the above three algorithms. The accuracy of neural network prediction before and after the optimisation of neural network by seagull algorithm, the butterfly algorithm incorporating reverse learning, the artificial rabbit algorithm, the particle swarm algorithm, and the genetic algorithm are got through the results respectively. The results of the experiments displayed that the neural network optimized of the improved butterfly algorithm incorporating reverse learning has a prediction accuracy of 99.69% with stable results, the optimised neural network prediction accuracy of the seagull algorithm reaches 99.51%, and the optimised neural network prediction accuracy of the artificial rabbit algorithm is 99.49%. The remaining two traditional algorithms optimized neural network accuracy is 83.1% and 99.43% respectively. Therefore, the improved butterfly algorithm incorporating reverse learning is the most effective among these three new algorithms applied to the field of antenna prediction. Moreover, the running time of the network optimized by different algorithms is quite distinct, among which the neural network optimized by the improved butterfly algorithm incorporating reverse learning takes the shortest time, which increases the prediction efficiency of the network by more than 70%. In summary, the application of the fused reverse learning improved butterfly algorithm in optimizing neural network predictions yields the shortest processing time and highest accuracy. This not only enables faster and more precise antenna design but also holds greater significance for the field of antenna design and analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助sijiong_han采纳,获得10
1秒前
wjy发布了新的文献求助10
3秒前
别辜负那个爱你的人完成签到,获得积分10
4秒前
kangkirk发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
唠嗑在呐完成签到,获得积分20
6秒前
yyyyzz完成签到,获得积分10
7秒前
科目三应助hxm采纳,获得10
7秒前
8秒前
艺玲发布了新的文献求助10
9秒前
panda_123发布了新的文献求助20
9秒前
柠檬加盐完成签到,获得积分10
9秒前
10秒前
kangkirk完成签到,获得积分10
10秒前
乐乐应助古月采纳,获得10
11秒前
11秒前
芒果爸爸完成签到,获得积分10
12秒前
852应助一一采纳,获得10
12秒前
12秒前
nobody发布了新的文献求助10
12秒前
SherWei发布了新的文献求助10
13秒前
13秒前
14秒前
天天快乐应助GoodEnough采纳,获得10
14秒前
完美世界应助哭泣乌采纳,获得10
15秒前
艳艳完成签到,获得积分20
15秒前
16秒前
NexusExplorer应助Hexagram采纳,获得10
16秒前
思源应助木棉采纳,获得10
16秒前
16秒前
顾矜应助xiaoX12138采纳,获得10
17秒前
17秒前
11发布了新的文献求助20
18秒前
18秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
orixero应助带你去喝雪碧采纳,获得30
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976058
求助须知:如何正确求助?哪些是违规求助? 3520294
关于积分的说明 11202245
捐赠科研通 3256804
什么是DOI,文献DOI怎么找? 1798471
邀请新用户注册赠送积分活动 877610
科研通“疑难数据库(出版商)”最低求助积分说明 806496