Antenna modeling based on meta-heuristic intelligent algorithms and neural networks

计算机科学 元启发式 启发式 人工神经网络 人工智能 零移动启发式 算法
作者
Huang Ju,Jingchang Nan,Mingming Gao,Yifei Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:159: 111623-111623 被引量:9
标识
DOI:10.1016/j.asoc.2024.111623
摘要

As wireless communication technology continues to advance, the antenna, as an essential front-end device in radio communication system, is surrounded by more and more complex electromagnetic wave environments with increasing variety, resulting in greater demand for antennas and higher design requirements. While the traditional antenna design methods suffered from the disadvantage of low design efficiency, a powerful tool for accelerating antenna design is the modelling of antennas with neural networks. Aiming to enhance the modeling accuracy of neural network, multiple novel meta-heuristic swarm intelligent algorithms are introduced and part of them are modified for the purpose of applying to optimizing network's weights and biases so as to raise the antenna model`s prediction precision on the basis of neural network. Specifically, the intelligent algorithms and their improvement directions include the strategy of optimizing weights and biases for neural networks with seagull optimization algorithm, optimizing the weights and biases of neural network with the improved butterfly algorithm fused with reverse learning, and the artificial rabbit algorithm optimizing the neural network weights and biases. In addition, two intelligent optimization algorithms that are already more mature: the particle swarm algorithm and the genetic algorithm are added to compare with the above three algorithms. The accuracy of neural network prediction before and after the optimisation of neural network by seagull algorithm, the butterfly algorithm incorporating reverse learning, the artificial rabbit algorithm, the particle swarm algorithm, and the genetic algorithm are got through the results respectively. The results of the experiments displayed that the neural network optimized of the improved butterfly algorithm incorporating reverse learning has a prediction accuracy of 99.69% with stable results, the optimised neural network prediction accuracy of the seagull algorithm reaches 99.51%, and the optimised neural network prediction accuracy of the artificial rabbit algorithm is 99.49%. The remaining two traditional algorithms optimized neural network accuracy is 83.1% and 99.43% respectively. Therefore, the improved butterfly algorithm incorporating reverse learning is the most effective among these three new algorithms applied to the field of antenna prediction. Moreover, the running time of the network optimized by different algorithms is quite distinct, among which the neural network optimized by the improved butterfly algorithm incorporating reverse learning takes the shortest time, which increases the prediction efficiency of the network by more than 70%. In summary, the application of the fused reverse learning improved butterfly algorithm in optimizing neural network predictions yields the shortest processing time and highest accuracy. This not only enables faster and more precise antenna design but also holds greater significance for the field of antenna design and analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mouxia发布了新的文献求助10
刚刚
Rocky_Qi发布了新的文献求助10
刚刚
刚刚
SSS完成签到,获得积分10
1秒前
熬夜波比应助shaco采纳,获得10
2秒前
二豆子0完成签到,获得积分10
2秒前
ZYYYY发布了新的文献求助10
3秒前
3秒前
汉堡包应助111采纳,获得10
3秒前
3秒前
pluto应助阔达犀牛采纳,获得10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
Twonej应助一分儿采纳,获得30
5秒前
homer完成签到,获得积分0
5秒前
6秒前
冷酷静竹发布了新的文献求助10
7秒前
yy32323发布了新的文献求助10
7秒前
求助人员发布了新的文献求助10
7秒前
7秒前
AhhHuang应助jasmine0211采纳,获得10
7秒前
星辰大海应助端庄的寄凡采纳,获得10
7秒前
我是老大应助陈sir采纳,获得10
8秒前
Bingo发布了新的文献求助10
8秒前
8秒前
9秒前
orixero应助xiaofeidiao采纳,获得10
9秒前
李爱波完成签到,获得积分10
9秒前
烟花应助xiaopeilin1982采纳,获得20
9秒前
所所应助温柔的枫采纳,获得10
10秒前
所所应助笑点低的衬衫采纳,获得30
10秒前
huahua完成签到 ,获得积分10
11秒前
李爱波发布了新的文献求助10
12秒前
yy32323完成签到,获得积分20
13秒前
甜美青槐完成签到,获得积分10
13秒前
13秒前
樱桃发布了新的文献求助10
13秒前
hang发布了新的文献求助10
13秒前
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049