Antenna modeling based on meta-heuristic intelligent algorithms and neural networks

计算机科学 元启发式 启发式 人工神经网络 人工智能 零移动启发式 算法
作者
Huang Ju,Jingchang Nan,Mingming Gao,Yifei Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:159: 111623-111623 被引量:9
标识
DOI:10.1016/j.asoc.2024.111623
摘要

As wireless communication technology continues to advance, the antenna, as an essential front-end device in radio communication system, is surrounded by more and more complex electromagnetic wave environments with increasing variety, resulting in greater demand for antennas and higher design requirements. While the traditional antenna design methods suffered from the disadvantage of low design efficiency, a powerful tool for accelerating antenna design is the modelling of antennas with neural networks. Aiming to enhance the modeling accuracy of neural network, multiple novel meta-heuristic swarm intelligent algorithms are introduced and part of them are modified for the purpose of applying to optimizing network's weights and biases so as to raise the antenna model`s prediction precision on the basis of neural network. Specifically, the intelligent algorithms and their improvement directions include the strategy of optimizing weights and biases for neural networks with seagull optimization algorithm, optimizing the weights and biases of neural network with the improved butterfly algorithm fused with reverse learning, and the artificial rabbit algorithm optimizing the neural network weights and biases. In addition, two intelligent optimization algorithms that are already more mature: the particle swarm algorithm and the genetic algorithm are added to compare with the above three algorithms. The accuracy of neural network prediction before and after the optimisation of neural network by seagull algorithm, the butterfly algorithm incorporating reverse learning, the artificial rabbit algorithm, the particle swarm algorithm, and the genetic algorithm are got through the results respectively. The results of the experiments displayed that the neural network optimized of the improved butterfly algorithm incorporating reverse learning has a prediction accuracy of 99.69% with stable results, the optimised neural network prediction accuracy of the seagull algorithm reaches 99.51%, and the optimised neural network prediction accuracy of the artificial rabbit algorithm is 99.49%. The remaining two traditional algorithms optimized neural network accuracy is 83.1% and 99.43% respectively. Therefore, the improved butterfly algorithm incorporating reverse learning is the most effective among these three new algorithms applied to the field of antenna prediction. Moreover, the running time of the network optimized by different algorithms is quite distinct, among which the neural network optimized by the improved butterfly algorithm incorporating reverse learning takes the shortest time, which increases the prediction efficiency of the network by more than 70%. In summary, the application of the fused reverse learning improved butterfly algorithm in optimizing neural network predictions yields the shortest processing time and highest accuracy. This not only enables faster and more precise antenna design but also holds greater significance for the field of antenna design and analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
秋澄完成签到 ,获得积分10
4秒前
5秒前
时光中的微粒完成签到 ,获得积分10
6秒前
lixiaorui发布了新的文献求助10
6秒前
科研通AI2S应助山沟沟采纳,获得10
7秒前
百浪多息完成签到,获得积分10
9秒前
LL完成签到 ,获得积分10
9秒前
呼呼呼完成签到,获得积分10
9秒前
今后应助多情山蝶采纳,获得10
9秒前
9秒前
Ming完成签到,获得积分10
10秒前
geats发布了新的文献求助10
10秒前
12秒前
13秒前
果冻呀完成签到,获得积分10
13秒前
15秒前
16秒前
小马甲应助一个小胖子采纳,获得10
19秒前
完美世界应助TTUTT采纳,获得10
19秒前
21秒前
lixiaorui发布了新的文献求助10
23秒前
歪比巴卜发布了新的文献求助10
23秒前
悲凉的大有完成签到,获得积分10
24秒前
0128lun发布了新的文献求助10
26秒前
上上签完成签到,获得积分10
26秒前
细心怀亦完成签到 ,获得积分10
26秒前
星之茧发布了新的文献求助10
28秒前
29秒前
废H发布了新的文献求助10
29秒前
29秒前
歪比巴卜完成签到,获得积分10
32秒前
32秒前
土豆完成签到,获得积分20
34秒前
多情山蝶发布了新的文献求助10
34秒前
水水的完成签到 ,获得积分10
35秒前
恸哭的千鸟完成签到 ,获得积分10
35秒前
隐形曼青应助jiajia采纳,获得10
35秒前
XHL发布了新的文献求助10
37秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536900
求助须知:如何正确求助?哪些是违规求助? 4624585
关于积分的说明 14592312
捐赠科研通 4565008
什么是DOI,文献DOI怎么找? 2502121
邀请新用户注册赠送积分活动 1480851
关于科研通互助平台的介绍 1452093