Antenna Modeling based on Meta-Heuristic Intelligent Algorithms and Neural Networks

计算机科学 元启发式 启发式 人工神经网络 人工智能 算法 机器学习
作者
Huang Ju,Jingchang Nan,Mingming Gao,Yifei Wang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:: 111623-111623 被引量:2
标识
DOI:10.1016/j.asoc.2024.111623
摘要

As wireless communication technology continues to advance, the antenna, as an essential front-end device in radio communication system, is surrounded by more and more complex electromagnetic wave environments with increasing variety, resulting in greater demand for antennas and higher design requirements. While the traditional antenna design methods suffered from the disadvantage of low design efficiency, a powerful tool for accelerating antenna design is the modelling of antennas with neural networks. Aiming to enhance the modeling accuracy of neural network, multiple novel meta-heuristic swarm intelligent algorithms are introduced and part of them are modified for the purpose of applying to optimizing network's weights and biases so as to raise the antenna model`s prediction precision on the basis of neural network. Specifically, the intelligent algorithms and their improvement directions include the strategy of optimizing weights and biases for neural networks with seagull optimization algorithm, optimizing the weights and biases of neural network with the improved butterfly algorithm fused with reverse learning, and the artificial rabbit algorithm optimizing the neural network weights and biases. In addition, two intelligent optimization algorithms that are already more mature: the particle swarm algorithm and the genetic algorithm are added to compare with the above three algorithms. The accuracy of neural network prediction before and after the optimisation of neural network by seagull algorithm, the butterfly algorithm incorporating reverse learning, the artificial rabbit algorithm, the particle swarm algorithm, and the genetic algorithm are got through the results respectively. The results of the experiments displayed that the neural network optimized of the improved butterfly algorithm incorporating reverse learning has a prediction accuracy of 99.69% with stable results, the optimised neural network prediction accuracy of the seagull algorithm reaches 99.51%, and the optimised neural network prediction accuracy of the artificial rabbit algorithm is 99.49%. The remaining two traditional algorithms optimized neural network accuracy is 83.1% and 99.43% respectively. Therefore, the improved butterfly algorithm incorporating reverse learning is the most effective among these three new algorithms applied to the field of antenna prediction. Moreover, the running time of the network optimized by different algorithms is quite distinct, among which the neural network optimized by the improved butterfly algorithm incorporating reverse learning takes the shortest time, which increases the prediction efficiency of the network by more than 70%. In summary, the application of the fused reverse learning improved butterfly algorithm in optimizing neural network predictions yields the shortest processing time and highest accuracy. This not only enables faster and more precise antenna design but also holds greater significance for the field of antenna design and analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ling完成签到,获得积分10
2秒前
王十二完成签到 ,获得积分10
2秒前
dypdyp应助Wang采纳,获得10
2秒前
研友_8RlQ2n完成签到,获得积分10
3秒前
Zhangll完成签到,获得积分10
4秒前
肖耶啵完成签到,获得积分10
5秒前
好困发布了新的文献求助10
5秒前
Ranrunn完成签到,获得积分10
5秒前
LLLLLLLL完成签到,获得积分10
7秒前
DrLuffy完成签到 ,获得积分10
7秒前
奈何桥完成签到,获得积分10
8秒前
无语的断缘完成签到,获得积分10
12秒前
amwlsai完成签到,获得积分10
14秒前
闪闪青雪完成签到,获得积分10
14秒前
踏实大侠完成签到,获得积分10
14秒前
舒心老五发布了新的文献求助10
15秒前
小詹完成签到,获得积分10
15秒前
double完成签到,获得积分20
15秒前
15秒前
KUZZZ完成签到,获得积分10
15秒前
vivi发布了新的文献求助20
16秒前
外向行云完成签到,获得积分10
16秒前
慕青应助KUZZZ采纳,获得10
19秒前
高大绝义完成签到,获得积分10
19秒前
而当下的完成签到,获得积分10
19秒前
markerfxq完成签到,获得积分10
20秒前
KrisTina完成签到 ,获得积分10
20秒前
20秒前
20秒前
科研肥料发布了新的文献求助10
20秒前
顺心醉蝶完成签到 ,获得积分10
21秒前
美满的砖头完成签到 ,获得积分10
21秒前
sunflowers完成签到 ,获得积分10
21秒前
勤恳的书文完成签到 ,获得积分10
22秒前
直率心锁完成签到,获得积分10
22秒前
孙非完成签到,获得积分10
23秒前
和平发展完成签到,获得积分10
23秒前
雪落你看不见完成签到,获得积分10
23秒前
成成成岩浆完成签到 ,获得积分10
24秒前
自然归尘完成签到 ,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513406
关于积分的说明 11167631
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875150
科研通“疑难数据库(出版商)”最低求助积分说明 804671