Antenna modeling based on meta-heuristic intelligent algorithms and neural networks

计算机科学 元启发式 启发式 人工神经网络 人工智能 零移动启发式 算法
作者
Huang Ju,Jingchang Nan,Mingming Gao,Yifei Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:159: 111623-111623 被引量:9
标识
DOI:10.1016/j.asoc.2024.111623
摘要

As wireless communication technology continues to advance, the antenna, as an essential front-end device in radio communication system, is surrounded by more and more complex electromagnetic wave environments with increasing variety, resulting in greater demand for antennas and higher design requirements. While the traditional antenna design methods suffered from the disadvantage of low design efficiency, a powerful tool for accelerating antenna design is the modelling of antennas with neural networks. Aiming to enhance the modeling accuracy of neural network, multiple novel meta-heuristic swarm intelligent algorithms are introduced and part of them are modified for the purpose of applying to optimizing network's weights and biases so as to raise the antenna model`s prediction precision on the basis of neural network. Specifically, the intelligent algorithms and their improvement directions include the strategy of optimizing weights and biases for neural networks with seagull optimization algorithm, optimizing the weights and biases of neural network with the improved butterfly algorithm fused with reverse learning, and the artificial rabbit algorithm optimizing the neural network weights and biases. In addition, two intelligent optimization algorithms that are already more mature: the particle swarm algorithm and the genetic algorithm are added to compare with the above three algorithms. The accuracy of neural network prediction before and after the optimisation of neural network by seagull algorithm, the butterfly algorithm incorporating reverse learning, the artificial rabbit algorithm, the particle swarm algorithm, and the genetic algorithm are got through the results respectively. The results of the experiments displayed that the neural network optimized of the improved butterfly algorithm incorporating reverse learning has a prediction accuracy of 99.69% with stable results, the optimised neural network prediction accuracy of the seagull algorithm reaches 99.51%, and the optimised neural network prediction accuracy of the artificial rabbit algorithm is 99.49%. The remaining two traditional algorithms optimized neural network accuracy is 83.1% and 99.43% respectively. Therefore, the improved butterfly algorithm incorporating reverse learning is the most effective among these three new algorithms applied to the field of antenna prediction. Moreover, the running time of the network optimized by different algorithms is quite distinct, among which the neural network optimized by the improved butterfly algorithm incorporating reverse learning takes the shortest time, which increases the prediction efficiency of the network by more than 70%. In summary, the application of the fused reverse learning improved butterfly algorithm in optimizing neural network predictions yields the shortest processing time and highest accuracy. This not only enables faster and more precise antenna design but also holds greater significance for the field of antenna design and analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路小丸子完成签到,获得积分10
刚刚
peng发布了新的文献求助10
1秒前
小马甲应助YR采纳,获得10
1秒前
z掌握一下发布了新的文献求助10
2秒前
失眠柚子完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
岩下松风完成签到,获得积分10
4秒前
5秒前
时光不旧只是满尘灰完成签到 ,获得积分10
6秒前
Hello应助peng采纳,获得10
7秒前
7秒前
椰丝yes完成签到,获得积分10
7秒前
鱼囧发布了新的文献求助10
7秒前
哆啦十七应助value采纳,获得10
7秒前
8秒前
风181013发布了新的文献求助10
9秒前
热心语山发布了新的文献求助10
12秒前
学术小白发布了新的文献求助30
12秒前
没有答案发布了新的文献求助10
13秒前
14秒前
隐形曼青应助玲也采纳,获得10
14秒前
14秒前
华仔应助kk采纳,获得10
14秒前
14秒前
杨拿铁完成签到,获得积分10
15秒前
李李李关注了科研通微信公众号
18秒前
JamesPei应助CL采纳,获得10
18秒前
jackmilton发布了新的文献求助10
19秒前
20秒前
研友_rLmNXn发布了新的文献求助10
20秒前
20秒前
22秒前
yyy发布了新的文献求助10
22秒前
23秒前
华仔应助研友_rLmNXn采纳,获得10
23秒前
dubo666发布了新的文献求助20
23秒前
英姑应助整齐谷芹采纳,获得80
23秒前
23秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342724
求助须知:如何正确求助?哪些是违规求助? 4478521
关于积分的说明 13939809
捐赠科研通 4375215
什么是DOI,文献DOI怎么找? 2404022
邀请新用户注册赠送积分活动 1396569
关于科研通互助平台的介绍 1368794