Antenna Modeling based on Meta-Heuristic Intelligent Algorithms and Neural Networks

计算机科学 元启发式 启发式 人工神经网络 人工智能 算法 机器学习
作者
Huang Ju,Jingchang Nan,Mingming Gao,Yifei Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:: 111623-111623 被引量:2
标识
DOI:10.1016/j.asoc.2024.111623
摘要

As wireless communication technology continues to advance, the antenna, as an essential front-end device in radio communication system, is surrounded by more and more complex electromagnetic wave environments with increasing variety, resulting in greater demand for antennas and higher design requirements. While the traditional antenna design methods suffered from the disadvantage of low design efficiency, a powerful tool for accelerating antenna design is the modelling of antennas with neural networks. Aiming to enhance the modeling accuracy of neural network, multiple novel meta-heuristic swarm intelligent algorithms are introduced and part of them are modified for the purpose of applying to optimizing network's weights and biases so as to raise the antenna model`s prediction precision on the basis of neural network. Specifically, the intelligent algorithms and their improvement directions include the strategy of optimizing weights and biases for neural networks with seagull optimization algorithm, optimizing the weights and biases of neural network with the improved butterfly algorithm fused with reverse learning, and the artificial rabbit algorithm optimizing the neural network weights and biases. In addition, two intelligent optimization algorithms that are already more mature: the particle swarm algorithm and the genetic algorithm are added to compare with the above three algorithms. The accuracy of neural network prediction before and after the optimisation of neural network by seagull algorithm, the butterfly algorithm incorporating reverse learning, the artificial rabbit algorithm, the particle swarm algorithm, and the genetic algorithm are got through the results respectively. The results of the experiments displayed that the neural network optimized of the improved butterfly algorithm incorporating reverse learning has a prediction accuracy of 99.69% with stable results, the optimised neural network prediction accuracy of the seagull algorithm reaches 99.51%, and the optimised neural network prediction accuracy of the artificial rabbit algorithm is 99.49%. The remaining two traditional algorithms optimized neural network accuracy is 83.1% and 99.43% respectively. Therefore, the improved butterfly algorithm incorporating reverse learning is the most effective among these three new algorithms applied to the field of antenna prediction. Moreover, the running time of the network optimized by different algorithms is quite distinct, among which the neural network optimized by the improved butterfly algorithm incorporating reverse learning takes the shortest time, which increases the prediction efficiency of the network by more than 70%. In summary, the application of the fused reverse learning improved butterfly algorithm in optimizing neural network predictions yields the shortest processing time and highest accuracy. This not only enables faster and more precise antenna design but also holds greater significance for the field of antenna design and analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
碗碗发布了新的文献求助10
1秒前
123发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
英俊的铭应助雪泥鸿爪采纳,获得10
3秒前
lincsh完成签到,获得积分10
3秒前
5秒前
lincsh发布了新的文献求助10
7秒前
我是老大应助卡卡罗特采纳,获得10
8秒前
llzuo发布了新的文献求助10
9秒前
李大白完成签到,获得积分10
9秒前
Jasper应助ml采纳,获得10
10秒前
jjjjchou完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
虚心碧完成签到 ,获得积分10
13秒前
13秒前
huang完成签到,获得积分20
15秒前
陈文文完成签到 ,获得积分10
15秒前
柔之发布了新的文献求助10
15秒前
徐徐完成签到,获得积分10
15秒前
FancyShi发布了新的文献求助10
16秒前
研友_8K29bZ发布了新的文献求助10
16秒前
17秒前
脆香可丽饼应助碗碗采纳,获得10
17秒前
17秒前
18秒前
Ava应助杰帅采纳,获得10
18秒前
呱呱发布了新的文献求助30
19秒前
20秒前
杜若发布了新的文献求助10
21秒前
ml发布了新的文献求助10
22秒前
李振华发布了新的文献求助10
23秒前
研友_8K29bZ完成签到,获得积分10
23秒前
zhang完成签到,获得积分10
23秒前
setmefree发布了新的文献求助10
24秒前
霸气的保温杯完成签到,获得积分10
24秒前
轻风完成签到,获得积分10
25秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141001
求助须知:如何正确求助?哪些是违规求助? 2791912
关于积分的说明 7800960
捐赠科研通 2448184
什么是DOI,文献DOI怎么找? 1302459
科研通“疑难数据库(出版商)”最低求助积分说明 626588
版权声明 601226