Terahertz electric-field-driven dynamical multiferroicity in SrTiO3

物理 凝聚态物理 声子 磁化 磁性 电场 太赫兹辐射 磁化动力学 极化密度 磁场 量子力学
作者
Martina Basini,Matteo Pancaldi,Björn Wehinger,Mattia Udina,Vivek Unikandanunni,Terumasa Tadano,Matthias C. Hoffmann,A. V. Balatsky,Stefano Bonetti
出处
期刊:Nature [Springer Nature]
卷期号:628 (8008): 534-539 被引量:25
标识
DOI:10.1038/s41586-024-07175-9
摘要

Abstract The emergence of collective order in matter is among the most fundamental and intriguing phenomena in physics. In recent years, the dynamical control and creation of novel ordered states of matter not accessible in thermodynamic equilibrium is receiving much attention 1–6 . The theoretical concept of dynamical multiferroicity has been introduced to describe the emergence of magnetization due to time-dependent electric polarization in non-ferromagnetic materials 7,8 . In simple terms, the coherent rotating motion of the ions in a crystal induces a magnetic moment along the axis of rotation. Here we provide experimental evidence of room-temperature magnetization in the archetypal paraelectric perovskite SrTiO 3 due to this mechanism. We resonantly drive the infrared-active soft phonon mode with an intense circularly polarized terahertz electric field and detect the time-resolved magneto-optical Kerr effect. A simple model, which includes two coupled nonlinear oscillators whose forces and couplings are derived with ab initio calculations using self-consistent phonon theory at a finite temperature 9 , reproduces qualitatively our experimental observations. A quantitatively correct magnitude was obtained for the effect by also considering the phonon analogue of the reciprocal of the Einstein–de Haas effect, which is also called the Barnett effect, in which the total angular momentum from the phonon order is transferred to the electronic one. Our findings show a new path for the control of magnetism, for example, for ultrafast magnetic switches, by coherently controlling the lattice vibrations with light.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
求文献完成签到,获得积分10
2秒前
蓝天完成签到,获得积分10
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
老实幻姬应助变化采纳,获得40
6秒前
KK完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
11发布了新的文献求助10
8秒前
风中的含羞草完成签到,获得积分10
9秒前
9秒前
bobzx12发布了新的文献求助10
10秒前
12秒前
AJL关注了科研通微信公众号
12秒前
星辰完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
Vito完成签到,获得积分10
14秒前
李健应助同频共振采纳,获得10
14秒前
蓝胖子发布了新的文献求助10
15秒前
15秒前
李健应助bobzx12采纳,获得10
15秒前
17秒前
咯噔完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
KYG发布了新的文献求助10
18秒前
共享精神应助煎饼采纳,获得30
18秒前
18秒前
如意巨人发布了新的文献求助10
20秒前
老解发布了新的文献求助10
20秒前
20秒前
21秒前
英俊的访波完成签到,获得积分10
21秒前
11完成签到,获得积分10
21秒前
科研通AI6应助ccc采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660366
求助须知:如何正确求助?哪些是违规求助? 4833486
关于积分的说明 15090434
捐赠科研通 4819032
什么是DOI,文献DOI怎么找? 2578985
邀请新用户注册赠送积分活动 1533542
关于科研通互助平台的介绍 1492262