An enhanced ant colony optimization algorithm for global path planning of deep-sea mining vehicles

蚁群优化算法 路径(计算) 计算机科学 运动规划 算法 人工智能 蚂蚁 计算机网络 机器人 程序设计语言
作者
Weixing Liang,Min Lou,Zhangxin Chen,Huiyang Qin,Chen Zhang,Chengwei Cui,Yangyang Wang
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:301: 117415-117415 被引量:2
标识
DOI:10.1016/j.oceaneng.2024.117415
摘要

Due to the complex variations in slope within deep-sea mining areas, effective path planning for mining vehicle operations is crucial for minimizing energy consumption. However, traditional ant colony algorithms (ACO) neglect the effect of a terrain slope in mining areas. Additionally, these algorithms exhibit limitations such as slow convergence and susceptibility to local optima. To address these issues, this study proposes an enhanced ant colony algorithm, called DYACO, for mining vehicle path optimization. This algorithm dynamically adjusts heuristic information, pheromone volatilization factor, pheromone update strategy, and state transition probability during the iterative process to enhance traditional ACO. Simulation experiments were conducted to comprehensively assess the proposed model, revealing that DYACO not only generates optimal solutions but also demonstrates significant advantages in terms of convergence speed and turning times. Furthermore, DYACO converts the time required for mining vehicles to traverse different slope regions into distances, then incorporating slope effects to path planning for deep-sea mining vehicles. In comparison to ACO, DYACO achieves a 15.3% reduction in the length of an optimal path and a 70.0% decrease in the number of turn times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助熬夜的桃子采纳,获得10
刚刚
方远锋发布了新的文献求助10
刚刚
刚刚
1秒前
斯文败类应助Yimingfang采纳,获得10
1秒前
HH发布了新的文献求助10
1秒前
你猜完成签到,获得积分10
2秒前
gwd发布了新的文献求助10
3秒前
4秒前
京津冀jjj完成签到,获得积分20
4秒前
鑫叶发布了新的文献求助20
5秒前
香蕉觅云应助玩命的行云采纳,获得10
5秒前
刘洋完成签到 ,获得积分10
7秒前
一年半太久只争朝夕完成签到,获得积分10
7秒前
Dr.Lawrence应助研友_LJGoXn采纳,获得10
8秒前
8秒前
科研通AI5应助香香香采纳,获得10
9秒前
威武白秋完成签到,获得积分10
10秒前
11秒前
雪掩的往事完成签到,获得积分10
11秒前
烟花应助yy采纳,获得20
11秒前
11秒前
CipherSage应助BreezyGallery采纳,获得10
12秒前
慕青应助冯小Q采纳,获得10
12秒前
科研小民工应助默默三毒采纳,获得30
13秒前
火星上的菲鹰应助Nathaniel采纳,获得10
14秒前
14秒前
15秒前
____(fg)发布了新的文献求助10
15秒前
15秒前
16秒前
乐乐应助long采纳,获得10
16秒前
16秒前
yuaner发布了新的文献求助10
17秒前
HH完成签到,获得积分10
17秒前
17秒前
colddie发布了新的文献求助30
19秒前
Lucas应助白立轩采纳,获得10
19秒前
Hzz发布了新的文献求助10
19秒前
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669446
求助须知:如何正确求助?哪些是违规求助? 3227157
关于积分的说明 9773662
捐赠科研通 2937177
什么是DOI,文献DOI怎么找? 1609199
邀请新用户注册赠送积分活动 760130
科研通“疑难数据库(出版商)”最低求助积分说明 735760