A perspective‐driven and technical evaluation of machine learning in bioreactor scale‐up: A case‐study for potential model developments

透视图(图形) 比例(比率) 生物反应器 计算机科学 工程类 放大 人工智能 工业工程 生化工程 系统工程 制造工程 机器学习 生物 物理 植物 经典力学 量子力学
作者
Masih Karimi Alavijeh,Yih Yean Lee,Sally L. Gras
出处
期刊:Engineering in Life Sciences [Wiley]
卷期号:24 (7) 被引量:1
标识
DOI:10.1002/elsc.202400023
摘要

Abstract Bioreactor scale‐up and scale‐down have always been a topical issue for the biopharmaceutical industry and despite considerable effort, the identification of a fail‐safe strategy for bioprocess development across scales remains a challenge. With the ubiquitous growth of digital transformation technologies, new scaling methods based on computer models may enable more effective scaling. This study aimed to evaluate the potential application of machine learning (ML) algorithms for bioreactor scale‐up, with a specific focus on the prediction of scaling parameters. Factors critical to the development of such models were identified and data for bioreactor scale‐up studies involving CHO cell‐generated mAb products collated from the literature and public sources for the development of unsupervised and supervised ML models. Comparison of bioreactor performance across scales identified similarities between the different processes and primary differences between small‐ and large‐scale bioreactors. A series of three case studies were developed to assess the relationship between cell growth and scale‐sensitive bioreactor features. An embedding layer improved the capability of artificial neural network models to predict cell growth at a large‐scale, as this approach captured similarities between the processes. Further models constructed to predict scaling parameters demonstrated how ML models may be applied to assist the scaling process. The development of data sets that include more characterization data with greater variability under different gassing and agitation regimes will also assist the future development of ML tools for bioreactor scaling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_5ZlEl8完成签到,获得积分20
刚刚
李健的小迷弟应助孔孔采纳,获得10
1秒前
1秒前
万能图书馆应助星语花采纳,获得10
1秒前
啊棕发布了新的文献求助10
1秒前
Sissi完成签到 ,获得积分10
2秒前
LioXH完成签到,获得积分10
3秒前
yu完成签到 ,获得积分10
3秒前
3秒前
1111完成签到,获得积分10
3秒前
机灵的煎蛋完成签到,获得积分10
3秒前
顺利映天完成签到,获得积分10
4秒前
4秒前
我是老大应助受伤雁荷采纳,获得10
5秒前
所所应助JJun采纳,获得10
5秒前
haizz发布了新的文献求助10
6秒前
6秒前
隋阳完成签到 ,获得积分10
6秒前
思源应助HYF采纳,获得10
6秒前
大方安白发布了新的文献求助10
6秒前
6秒前
于鱼完成签到,获得积分10
7秒前
三三四发布了新的文献求助10
8秒前
万能图书馆应助三金采纳,获得10
8秒前
可爱的函函应助adkis采纳,获得10
8秒前
波特卡斯D艾斯完成签到 ,获得积分10
9秒前
9秒前
义气的翅膀完成签到,获得积分10
10秒前
jscr发布了新的文献求助10
10秒前
liang发布了新的文献求助10
10秒前
11秒前
鲁涔完成签到,获得积分10
11秒前
12秒前
13秒前
橙子皮发布了新的文献求助10
13秒前
King完成签到,获得积分10
14秒前
14秒前
14秒前
爆米花应助独特沛白采纳,获得10
14秒前
大方安白完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563901
求助须知:如何正确求助?哪些是违规求助? 3137137
关于积分的说明 9421201
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559912
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717197