A novel temporal adaptive fuzzy neural network for facial feature based fatigue assessment

计算机科学 特征(语言学) 人工智能 人工神经网络 模糊逻辑 模式识别(心理学) 机器学习 哲学 语言学
作者
Zhimin Zhang,Hongmei Wang,Qi You,Liming Chen,Huansheng Ning
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:: 124124-124124
标识
DOI:10.1016/j.eswa.2024.124124
摘要

When engaging in activities such as using video display terminals, driving, or sports, effective fatigue monitoring is crucial. Nevertheless, obtaining biological information through contact devices may interfere with normal activities. Deterministic expressions in mainstream machine learning have limitations in reflecting the continuous, dynamic, and fuzzy process of fatigue status. Additionally, fatigue is a cumulative process where the previous state impacts the assessment of the current one. To address these needs and challenges, this paper proposes a novel model based on facial videos called the temporal adaptive fuzzy neural network (TAFNN) for fatigue assessment. TAFNN utilizes an adaptive fuzzy neural network as its foundation and employs causal and dilated convolutions for the time information processing method to achieve time series extraction and fatigue assessment. It leverages facial physiological and motion features to minimize interference during assessment. Furthermore, TAFNN introduces a new calculation method for rule antecedents to enhance stability. Experimental results demonstrate that TAFNN effectively captures the cumulation and fuzziness of state changes, outperforming other widely adopted methods in both assessment ability and runtime performance. The improved rule antecedent calculation method successfully mitigates the issue of multiple memberships rapidly approaching zero after combination. Through 1000 repeated experiments, the enhanced method reduces TAFNN's instability by 81.58%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kira完成签到,获得积分10
2秒前
舒服的茹嫣完成签到,获得积分20
2秒前
Stvn发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
4秒前
明理的天蓝完成签到,获得积分10
4秒前
咳咳发布了新的文献求助10
4秒前
木叶研完成签到,获得积分10
4秒前
无花果应助通~采纳,获得10
4秒前
5秒前
6秒前
周助发布了新的文献求助10
6秒前
伯赏秋白完成签到,获得积分10
6秒前
慕青应助sunzhiyu233采纳,获得10
6秒前
Sherwin完成签到,获得积分10
6秒前
羽毛完成签到,获得积分20
7秒前
xiongjian发布了新的文献求助10
7秒前
一方通行完成签到 ,获得积分10
7秒前
7秒前
monster0101完成签到 ,获得积分10
7秒前
8秒前
8秒前
9秒前
Stvn完成签到,获得积分20
9秒前
核桃发布了新的文献求助10
9秒前
跳跃的太阳完成签到,获得积分10
10秒前
10秒前
enoot完成签到,获得积分10
10秒前
dalin完成签到,获得积分10
10秒前
YE发布了新的文献求助10
10秒前
buno应助外向的沅采纳,获得10
10秒前
体贴啤酒发布了新的文献求助10
11秒前
花痴的谷雪完成签到,获得积分10
11秒前
11秒前
圈圈发布了新的文献求助10
11秒前
亮亮完成签到,获得积分10
11秒前
没有稗子完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740