Capsule Network Based on Double-layer Attention Mechanism and Multi-scale Feature Extraction for Remaining Life Prediction

图层(电子) 计算机科学 比例(比率) 机制(生物学) 人工智能 特征提取 萃取(化学) 特征(语言学) 模式识别(心理学) 材料科学 色谱法 化学 纳米技术 物理 地图学 地理 语言学 哲学 量子力学
作者
Zhiwu Shang,Zehua Feng,Wanxiang Li,Zhihua Wu,Hongchuan Cheng
出处
期刊:Neural Processing Letters [Springer Nature]
卷期号:56 (3) 被引量:1
标识
DOI:10.1007/s11063-024-11651-8
摘要

Abstract The era of big data provides a platform for high-precision RUL prediction, but the existing RUL prediction methods, which effectively extract key degradation information, remain a challenge. Existing methods ignore the influence of sensor and degradation moment variability, and instead assign weights to them equally, which affects the final prediction accuracy. In addition, convolutional networks lose key information due to downsampling operations and also suffer from the drawback of insufficient feature extraction capability. To address these issues, the two-layer attention mechanism and the Inception module are embedded in the capsule structure (mai-capsule model) for lifetime prediction. The first layer of the channel attention mechanism (CAM) evaluates the influence of various sensor information on the forecast; the second layer adds a time-step attention (TSAM) mechanism to the LSTM network to weigh the contribution of different moments of the engine's whole life cycle to the prediction, while weakening the influence of environmental noise on the prediction. The Inception module is introduced to perform multi-scale feature extraction on the weighted data to capture the degradation information to the maximum extent. Lastly, we are inspired to employ the capsule network to capture important position information of high and low-dimensional features, given its capacity to facilitate a more effective rendition of the overall features of the time-series data. The efficacy of the suggested model is assessed against other approaches and verified using the publicly accessible C-MPASS dataset. The end findings demonstrate the excellent prediction precision of the suggested approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
panda发布了新的文献求助10
1秒前
Sivledy完成签到,获得积分10
2秒前
2秒前
wuyu发布了新的文献求助10
2秒前
LXR发布了新的文献求助10
2秒前
2秒前
3秒前
多金多金完成签到 ,获得积分10
5秒前
自信石头发布了新的文献求助10
5秒前
吧唧发布了新的文献求助10
6秒前
传奇3应助强健的匕采纳,获得10
6秒前
深情安青应助对映体采纳,获得10
6秒前
7秒前
儒雅的蜜粉完成签到,获得积分10
7秒前
zz发布了新的文献求助10
7秒前
7秒前
8秒前
陈丞澄发布了新的文献求助10
8秒前
蓦然发布了新的文献求助10
11秒前
11秒前
YCG完成签到 ,获得积分10
12秒前
竹筏过海应助淡然天问采纳,获得30
12秒前
浮游应助淡然天问采纳,获得10
12秒前
领导范儿应助柔弱的冬天采纳,获得30
13秒前
落后翠柏发布了新的文献求助10
14秒前
不安的成协完成签到,获得积分10
15秒前
15秒前
16秒前
长情听南发布了新的文献求助10
17秒前
锦慜发布了新的文献求助10
17秒前
顾矜应助蓦然采纳,获得10
18秒前
可爱的函函应助panda采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
李昕123发布了新的文献求助10
19秒前
19秒前
吧唧完成签到,获得积分10
20秒前
123456完成签到,获得积分10
21秒前
大模型应助wjy321采纳,获得10
21秒前
云漫山发布了新的文献求助10
21秒前
Ruby应助jsss采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744034
关于积分的说明 15000235
捐赠科研通 4795945
什么是DOI,文献DOI怎么找? 2562246
邀请新用户注册赠送积分活动 1521747
关于科研通互助平台的介绍 1481704