Capsule Network Based on Double-layer Attention Mechanism and Multi-scale Feature Extraction for Remaining Life Prediction

图层(电子) 计算机科学 比例(比率) 机制(生物学) 人工智能 特征提取 萃取(化学) 特征(语言学) 模式识别(心理学) 材料科学 色谱法 化学 纳米技术 物理 地图学 地理 语言学 哲学 量子力学
作者
Zhiwu Shang,Zehua Feng,Wanxiang Li,Zhihua Wu,Hongchuan Cheng
出处
期刊:Neural Processing Letters [Springer Nature]
卷期号:56 (3) 被引量:1
标识
DOI:10.1007/s11063-024-11651-8
摘要

Abstract The era of big data provides a platform for high-precision RUL prediction, but the existing RUL prediction methods, which effectively extract key degradation information, remain a challenge. Existing methods ignore the influence of sensor and degradation moment variability, and instead assign weights to them equally, which affects the final prediction accuracy. In addition, convolutional networks lose key information due to downsampling operations and also suffer from the drawback of insufficient feature extraction capability. To address these issues, the two-layer attention mechanism and the Inception module are embedded in the capsule structure (mai-capsule model) for lifetime prediction. The first layer of the channel attention mechanism (CAM) evaluates the influence of various sensor information on the forecast; the second layer adds a time-step attention (TSAM) mechanism to the LSTM network to weigh the contribution of different moments of the engine's whole life cycle to the prediction, while weakening the influence of environmental noise on the prediction. The Inception module is introduced to perform multi-scale feature extraction on the weighted data to capture the degradation information to the maximum extent. Lastly, we are inspired to employ the capsule network to capture important position information of high and low-dimensional features, given its capacity to facilitate a more effective rendition of the overall features of the time-series data. The efficacy of the suggested model is assessed against other approaches and verified using the publicly accessible C-MPASS dataset. The end findings demonstrate the excellent prediction precision of the suggested approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助王然采纳,获得10
1秒前
sdniuidifod完成签到,获得积分10
2秒前
cui发布了新的文献求助10
2秒前
风格化橙发布了新的文献求助10
2秒前
3秒前
www111完成签到,获得积分20
3秒前
myelin完成签到,获得积分10
3秒前
chengyida完成签到,获得积分10
4秒前
标致凝莲完成签到 ,获得积分10
5秒前
腼腆的南晴完成签到 ,获得积分10
5秒前
www111发布了新的文献求助10
5秒前
5秒前
田様应助LXJY采纳,获得10
6秒前
端庄的火龙果完成签到 ,获得积分10
6秒前
cui完成签到,获得积分10
7秒前
明研完成签到,获得积分10
7秒前
贪玩的秋柔应助简单不言采纳,获得10
8秒前
彭于晏应助awaibi采纳,获得10
8秒前
王小美发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
Elena完成签到 ,获得积分10
11秒前
11秒前
12秒前
隐形曼青应助kitiker采纳,获得10
12秒前
12秒前
思源应助霸气映之采纳,获得10
12秒前
12秒前
看不完的文献完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
所所应助小白采纳,获得10
14秒前
PP213发布了新的文献求助10
14秒前
研友_VZG7GZ应助麻辣香香采纳,获得10
15秒前
Kate应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得20
15秒前
佳佳应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707