Capsule Network Based on Double-layer Attention Mechanism and Multi-scale Feature Extraction for Remaining Life Prediction

图层(电子) 计算机科学 比例(比率) 机制(生物学) 人工智能 特征提取 萃取(化学) 特征(语言学) 模式识别(心理学) 材料科学 色谱法 化学 纳米技术 物理 地图学 地理 哲学 语言学 量子力学
作者
Zhiwu Shang,Zehua Feng,Wanxiang Li,Zhihua Wu,Hongchuan Cheng
出处
期刊:Neural Processing Letters [Springer Science+Business Media]
卷期号:56 (3) 被引量:1
标识
DOI:10.1007/s11063-024-11651-8
摘要

Abstract The era of big data provides a platform for high-precision RUL prediction, but the existing RUL prediction methods, which effectively extract key degradation information, remain a challenge. Existing methods ignore the influence of sensor and degradation moment variability, and instead assign weights to them equally, which affects the final prediction accuracy. In addition, convolutional networks lose key information due to downsampling operations and also suffer from the drawback of insufficient feature extraction capability. To address these issues, the two-layer attention mechanism and the Inception module are embedded in the capsule structure (mai-capsule model) for lifetime prediction. The first layer of the channel attention mechanism (CAM) evaluates the influence of various sensor information on the forecast; the second layer adds a time-step attention (TSAM) mechanism to the LSTM network to weigh the contribution of different moments of the engine's whole life cycle to the prediction, while weakening the influence of environmental noise on the prediction. The Inception module is introduced to perform multi-scale feature extraction on the weighted data to capture the degradation information to the maximum extent. Lastly, we are inspired to employ the capsule network to capture important position information of high and low-dimensional features, given its capacity to facilitate a more effective rendition of the overall features of the time-series data. The efficacy of the suggested model is assessed against other approaches and verified using the publicly accessible C-MPASS dataset. The end findings demonstrate the excellent prediction precision of the suggested approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
炙热芝完成签到,获得积分10
1秒前
Marts完成签到,获得积分20
1秒前
1秒前
逆鳞发布了新的文献求助10
3秒前
AlexLXJ发布了新的文献求助10
3秒前
Emma发布了新的文献求助10
4秒前
叶。。。发布了新的文献求助10
5秒前
6秒前
6秒前
裴秀智发布了新的文献求助10
6秒前
所所应助蜉蝣采纳,获得10
7秒前
酷波er应助英吉利25采纳,获得10
7秒前
小鱼发布了新的文献求助10
9秒前
倪妮发布了新的文献求助10
9秒前
火星人发布了新的文献求助10
9秒前
9秒前
田様应助怡然千琴采纳,获得10
10秒前
二分三分完成签到,获得积分10
10秒前
11秒前
11秒前
叶子完成签到 ,获得积分10
12秒前
loong完成签到,获得积分10
12秒前
Hello应助周城采纳,获得10
12秒前
今后应助Zox采纳,获得10
13秒前
13秒前
ju00完成签到,获得积分10
13秒前
14秒前
欢欢完成签到 ,获得积分10
15秒前
某某发布了新的文献求助10
15秒前
16秒前
苏紫梗桔发布了新的文献求助10
17秒前
17秒前
逆鳞完成签到,获得积分10
18秒前
18秒前
golf完成签到,获得积分10
19秒前
心灵美的修洁完成签到 ,获得积分10
19秒前
20秒前
20秒前
Akim应助hxm采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259353
求助须知:如何正确求助?哪些是违规求助? 4421049
关于积分的说明 13761672
捐赠科研通 4294788
什么是DOI,文献DOI怎么找? 2356585
邀请新用户注册赠送积分活动 1352976
关于科研通互助平台的介绍 1313938