亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Capsule Network Based on Double-layer Attention Mechanism and Multi-scale Feature Extraction for Remaining Life Prediction

图层(电子) 计算机科学 比例(比率) 机制(生物学) 人工智能 特征提取 萃取(化学) 特征(语言学) 模式识别(心理学) 材料科学 色谱法 化学 纳米技术 物理 地图学 地理 语言学 哲学 量子力学
作者
Zhiwu Shang,Zehua Feng,Wanxiang Li,Zhihua Wu,Hongchuan Cheng
出处
期刊:Neural Processing Letters [Springer Nature]
卷期号:56 (3) 被引量:1
标识
DOI:10.1007/s11063-024-11651-8
摘要

Abstract The era of big data provides a platform for high-precision RUL prediction, but the existing RUL prediction methods, which effectively extract key degradation information, remain a challenge. Existing methods ignore the influence of sensor and degradation moment variability, and instead assign weights to them equally, which affects the final prediction accuracy. In addition, convolutional networks lose key information due to downsampling operations and also suffer from the drawback of insufficient feature extraction capability. To address these issues, the two-layer attention mechanism and the Inception module are embedded in the capsule structure (mai-capsule model) for lifetime prediction. The first layer of the channel attention mechanism (CAM) evaluates the influence of various sensor information on the forecast; the second layer adds a time-step attention (TSAM) mechanism to the LSTM network to weigh the contribution of different moments of the engine's whole life cycle to the prediction, while weakening the influence of environmental noise on the prediction. The Inception module is introduced to perform multi-scale feature extraction on the weighted data to capture the degradation information to the maximum extent. Lastly, we are inspired to employ the capsule network to capture important position information of high and low-dimensional features, given its capacity to facilitate a more effective rendition of the overall features of the time-series data. The efficacy of the suggested model is assessed against other approaches and verified using the publicly accessible C-MPASS dataset. The end findings demonstrate the excellent prediction precision of the suggested approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Unlisted完成签到,获得积分10
刚刚
科研通AI6应助科研通管家采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得30
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得30
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
11秒前
随便发布了新的文献求助10
16秒前
小桃耶发布了新的文献求助10
17秒前
20秒前
cheryjay发布了新的文献求助10
25秒前
隐形曼青应助小桃耶采纳,获得10
29秒前
cheryjay完成签到,获得积分10
31秒前
李健的小迷弟应助马文玉采纳,获得10
34秒前
Taiga完成签到 ,获得积分10
34秒前
半农应助cheryjay采纳,获得10
35秒前
旺旺完成签到,获得积分10
41秒前
科研通AI6应助SKY采纳,获得10
43秒前
陈chen完成签到 ,获得积分10
46秒前
桐桐应助芷兰丁香采纳,获得10
47秒前
feiCheung完成签到 ,获得积分10
1分钟前
1分钟前
丘比特应助gqz采纳,获得10
1分钟前
lly发布了新的文献求助10
1分钟前
Orange应助lly采纳,获得10
1分钟前
摸鱼王完成签到,获得积分10
1分钟前
激昂的如柏完成签到,获得积分10
1分钟前
1分钟前
小猫完成签到 ,获得积分10
1分钟前
sdshi发布了新的文献求助10
1分钟前
精明的信封完成签到,获得积分10
1分钟前
彭进水完成签到,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
慕青应助科研通管家采纳,获得10
2分钟前
qq完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584621
求助须知:如何正确求助?哪些是违规求助? 4668381
关于积分的说明 14771387
捐赠科研通 4611679
什么是DOI,文献DOI怎么找? 2530052
邀请新用户注册赠送积分活动 1498980
关于科研通互助平台的介绍 1467448