Scalable and Effective Temporal Graph Representation Learning With Hyperbolic Geometry

欧几里德几何 可扩展性 双曲几何 理论计算机科学 计算机科学 双曲空间 代表(政治) 图形 欧几里得空间 数学 离散数学 几何学 微分几何 组合数学 数据库 政治 政治学 法学
作者
Yuanyuan Xu,Wenjie Zhang,Xiwei Xu,Binghao Li,Ying Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:8
标识
DOI:10.1109/tnnls.2024.3394161
摘要

Real-life graphs often exhibit intricate dynamics that evolve continuously over time. To effectively represent continuous-time dynamic graphs (CTDGs), various temporal graph neural networks (TGNNs) have been developed to model their dynamics and topological structures in Euclidean space. Despite their notable achievements, the performance of Euclidean-based TGNNs is limited and bounded by the representation capabilities of Euclidean geometry, particularly for complex graphs with hierarchical and power-law structures. This is because Euclidean space does not have enough room (its volume grows polynomially with respect to radius) to learn hierarchical structures that expand exponentially. As a result, this leads to high-distortion embeddings and suboptimal temporal graph representations. To break the limitations and enhance the representation capabilities of TGNNs, in this article, we propose a scalable and effective TGNN with hyperbolic geometries for CTDG representation (called ${\rm STGN}^h$ ). It captures evolving behaviors and stores hierarchical structures simultaneously by integrating a memory-based module and a structure-based module into a unified framework, which can scale to billion-scale graphs. Concretely, a simple hyperbolic update gate (HuG) is designed as the memory-based module to store temporal dynamics efficiently; for the structure-based module, we propose an effective hyperbolic temporal Transformer (HyT) model to capture complex graph structures and generate up-to-date node embeddings. Extensive experimental results on a variety of medium-scale and billion-scale graphs demonstrate the superiority of the proposed ${\rm STGN}^h$ for CTDG representation, as it significantly outperforms baselines in various downstream tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助跳跃虔采纳,获得10
刚刚
刚刚
半个榴莲完成签到,获得积分10
1秒前
1秒前
狗干完成签到,获得积分10
1秒前
炼丹师应助娇气的背包采纳,获得20
1秒前
1秒前
华仔应助周亚平采纳,获得10
1秒前
1秒前
2秒前
zxzxzx完成签到,获得积分10
2秒前
聪明的书包完成签到 ,获得积分10
2秒前
孙昌耀完成签到,获得积分10
2秒前
小乌龟发布了新的文献求助10
3秒前
王一发布了新的文献求助10
3秒前
3秒前
小二郎应助大大小小采纳,获得10
3秒前
量子星尘发布了新的文献求助20
3秒前
3秒前
4秒前
xiaofeizhu发布了新的文献求助10
4秒前
lingyao发布了新的文献求助10
4秒前
李瑞瑞发布了新的文献求助10
4秒前
典雅的惜霜完成签到,获得积分20
5秒前
jsy发布了新的文献求助10
5秒前
小秋发布了新的文献求助10
6秒前
jtc发布了新的文献求助10
6秒前
李小里发布了新的文献求助10
6秒前
科研通AI5应助纯情的缘分采纳,获得10
7秒前
DCC发布了新的文献求助10
7秒前
Hello应助狗干采纳,获得10
7秒前
北辰发布了新的文献求助10
7秒前
粱踏歌发布了新的文献求助10
9秒前
9秒前
zyf发布了新的文献求助10
10秒前
典雅的俊驰应助djh采纳,获得10
11秒前
淼淼完成签到 ,获得积分10
11秒前
changping应助荔枝酱果冻采纳,获得10
11秒前
11秒前
大模型应助Hey采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001912
求助须知:如何正确求助?哪些是违规求助? 4247027
关于积分的说明 13231838
捐赠科研通 4045844
什么是DOI,文献DOI怎么找? 2213310
邀请新用户注册赠送积分活动 1223414
关于科研通互助平台的介绍 1143754