Scalable and Effective Temporal Graph Representation Learning With Hyperbolic Geometry

欧几里德几何 可扩展性 双曲几何 理论计算机科学 计算机科学 双曲空间 代表(政治) 图形 欧几里得空间 数学 离散数学 几何学 微分几何 组合数学 数据库 政治 政治学 法学
作者
Yuanyuan Xu,Wenjie Zhang,Xiwei Xu,Binghao Li,Ying Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:3
标识
DOI:10.1109/tnnls.2024.3394161
摘要

Real-life graphs often exhibit intricate dynamics that evolve continuously over time. To effectively represent continuous-time dynamic graphs (CTDGs), various temporal graph neural networks (TGNNs) have been developed to model their dynamics and topological structures in Euclidean space. Despite their notable achievements, the performance of Euclidean-based TGNNs is limited and bounded by the representation capabilities of Euclidean geometry, particularly for complex graphs with hierarchical and power-law structures. This is because Euclidean space does not have enough room (its volume grows polynomially with respect to radius) to learn hierarchical structures that expand exponentially. As a result, this leads to high-distortion embeddings and suboptimal temporal graph representations. To break the limitations and enhance the representation capabilities of TGNNs, in this article, we propose a scalable and effective TGNN with hyperbolic geometries for CTDG representation (called ${\rm STGN}^h$ ). It captures evolving behaviors and stores hierarchical structures simultaneously by integrating a memory-based module and a structure-based module into a unified framework, which can scale to billion-scale graphs. Concretely, a simple hyperbolic update gate (HuG) is designed as the memory-based module to store temporal dynamics efficiently; for the structure-based module, we propose an effective hyperbolic temporal Transformer (HyT) model to capture complex graph structures and generate up-to-date node embeddings. Extensive experimental results on a variety of medium-scale and billion-scale graphs demonstrate the superiority of the proposed ${\rm STGN}^h$ for CTDG representation, as it significantly outperforms baselines in various downstream tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
morena发布了新的文献求助10
1秒前
nuo发布了新的文献求助10
2秒前
obito完成签到,获得积分10
2秒前
Jerry完成签到,获得积分10
2秒前
Jonkidi关注了科研通微信公众号
4秒前
6秒前
Johnlian发布了新的文献求助30
6秒前
领导范儿应助nuo采纳,获得10
7秒前
吴可盈发布了新的文献求助10
7秒前
渝州人发布了新的文献求助10
7秒前
脑洞疼应助TaooSHuu采纳,获得10
7秒前
Sharon完成签到 ,获得积分10
8秒前
彭于晏应助wdwa采纳,获得10
8秒前
爆米花应助小王采纳,获得10
8秒前
小蘑菇应助淡然的大碗采纳,获得10
10秒前
俞秋烟发布了新的文献求助10
12秒前
不配.应助lys采纳,获得10
12秒前
孤独葶完成签到,获得积分10
13秒前
15秒前
15秒前
圈哥完成签到,获得积分10
17秒前
17秒前
隐形曼青应助韦明凯采纳,获得10
17秒前
悠游书浪完成签到,获得积分10
17秒前
18秒前
19秒前
Tss发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
无花果应助优雅的听兰采纳,获得10
21秒前
SciGPT应助小王采纳,获得10
21秒前
wdwa发布了新的文献求助10
22秒前
23秒前
24秒前
laryc发布了新的文献求助10
24秒前
懒羊羊完成签到 ,获得积分10
25秒前
25秒前
高分求助中
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3178480
求助须知:如何正确求助?哪些是违规求助? 2829481
关于积分的说明 7971737
捐赠科研通 2490836
什么是DOI,文献DOI怎么找? 1327984
科研通“疑难数据库(出版商)”最低求助积分说明 635372
版权声明 602904