已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Highly Organized Monolayer Arrangement of 2D Materials and Its Applications

单层 材料科学 纳米技术 计算机科学
作者
Nobuyuki Sakai,Takayoshi Sasaki
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:5 (6): 752-760
标识
DOI:10.1021/accountsmr.4c00072
摘要

Conspectus2D materials, also termed 2D nanosheets, have attracted significant interest due to their unique molecularly thin 2D structure to exhibit various attractive properties. They include a diverse range of materials, such as graphene, chalcogenide, oxide, hydroxide, and carbide. Such 2D materials can be produced via the delamination of their precursor layered compounds. Different from graphite and van der Waals layered compounds, there are a wide range of layered materials accommodating interlayer counterions, serving as a trigger for delamination upon exchange with suitable species. Since interlayer galleries swell evenly and infinitely, single-layer nanosheets can be obtained in high yield in the form of a colloidal suspension.The arrangement of unilamellar 2D nanosheets on a substrate surface, avoiding large gaps and overlaps, is crucial for fully harnessing their performance. A resulting monolayer film of neatly tiled 2D nanosheets can provide a molecularly thin interface and a well-defined crystalline surface, leading to the development of unique properties and reactivities. Consequently, considerable efforts have been focused on developing solution-based assembly techniques, including electrostatic self-assembly, the Langmuir–Blodgett (LB) method, and spin coating, to produce highly organized monolayer films.In the electrostatic self-assembly process, a substrate with an oppositely charged surface is immersed in the nanosheet suspension, and nanosheets are adsorbed on the substrate through electrostatic attraction, forming a monolayer film of nanosheets in a self-assembly fashion. In the case of LB and spin coating methods, nanosheets trapped at the air–liquid interface are densely packed in a lateral direction to achieve neat monolayer tiling on a solvent surface, which is then transferred onto a substrate surface. Compared to the electrostatic self-assembled film, the LB method yields a higher-quality monolayer film of nanosheets without large gaps or overlaps thanks to the surface compression. Similar neat tiling has been achieved by using the spin coating method with optimized deposition parameters. The advantage of this method is its ability to fabricate the film in a shorter period (∼a few minutes), making it most suitable for practical use.Neatly tiled monolayer films of nanosheets have been applied to modify the surface and interface properties of materials, as exemplified by the performance enhancement of batteries and epitaxial growth of crystalline thin films. Furthermore, the precise monolayer tiling serves as the fundamental step for constructing multilayer films of each nanosheet or even artificial lattice-like films, where nanosheets are stacked in a designed sequence, allowing for the evolution of sophisticated functionalities via synergetic coupling between constituent nanosheets. It has been demonstrated that heterostructured films, composed of various types of nanosheets, can enhance the individual properties of components and introduce novel functions. The integration of nanosheets with different properties using the methods outlined in this Account will lead to the realization of various next-generation devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Euuii完成签到 ,获得积分10
刚刚
标致断缘完成签到 ,获得积分10
3秒前
YKX完成签到,获得积分10
8秒前
桃花源的瓶起子完成签到 ,获得积分10
10秒前
bkagyin应助ayw采纳,获得10
10秒前
12秒前
己凡发布了新的文献求助10
12秒前
爆米花应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得30
16秒前
16秒前
烟花应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
17秒前
香蕉觅云应助niuniu采纳,获得10
18秒前
19秒前
19秒前
sirius发布了新的文献求助10
23秒前
25秒前
罗皮特完成签到,获得积分10
26秒前
28秒前
niuniu发布了新的文献求助10
30秒前
科研通AI5应助sirius采纳,获得10
31秒前
31秒前
31秒前
orixero应助hahah采纳,获得10
32秒前
Zcl发布了新的文献求助30
32秒前
所所应助wop111采纳,获得10
33秒前
36秒前
己凡发布了新的文献求助10
37秒前
wxnice完成签到,获得积分10
37秒前
niuniu完成签到,获得积分10
37秒前
香蕉觅云应助燚槿采纳,获得10
37秒前
科研通AI6应助慢慢采纳,获得10
39秒前
自由的梦露完成签到 ,获得积分10
39秒前
Jessica完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Modeling Ungrammaticality in Optimality Theory 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4944455
求助须知:如何正确求助?哪些是违规求助? 4209377
关于积分的说明 13085135
捐赠科研通 3989004
什么是DOI,文献DOI怎么找? 2183965
邀请新用户注册赠送积分活动 1199322
关于科研通互助平台的介绍 1112234