Federated Learning in Large Model Era: Vision-Language Model for Smart City Safety Operation Management

计算机科学 数据建模 计算机安全 软件工程
作者
Zengxiang Li,Zhaoxiang Hou,Hui Xia Liu,Tongzhi Li,Chengyi Yang,Ying Wang,Chao‐Xiang Shi,Longfei Xie,Weishan Zhang,Liang Xu,Zelei Liu
标识
DOI:10.1145/3589335.3651939
摘要

With the tremendous success of large language models such as ChatGPT, artificial intelligence has entered a new era of large models. Multimodal data, which can comprehensively perceive and recognize the physical world, has become an essential path towards general artificial intelligence. However, multimodal large models trained on public datasets often underperform in specific industrial domains. In this paper, we tackle the problem of building large vision-language intelligent models for specific industrial domains by leveraging the general large models and federated learning. We compare the challenges faced by federated learning in the era of small models and large models from different dimensions, and propose a technical framework for federated learning in the era of large models.Specifically, our framework mainly considers three aspects: heterogeneous model fusion, flexible aggregation methods, and data quality improvement. Based on this framework, we conduct a case study of leading enterprises contributing vision-language data and expert knowledge to city safety operation management. The preliminary experiments show that enterprises can enhance and accumulate their intelligence capabilities through federated learning, and jointly create an intelligent city model that provides high-quality intelligent services covering energy infrastructure security, residential community security and urban operation management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
阔达的无剑完成签到,获得积分10
3秒前
桐桐应助sszxlijin采纳,获得10
3秒前
5秒前
Ran发布了新的文献求助10
5秒前
隐形曼青应助Della采纳,获得10
6秒前
yitai完成签到,获得积分10
6秒前
jjjjj发布了新的文献求助30
7秒前
杜兰特发布了新的文献求助20
8秒前
10秒前
木心应助负责小蜜蜂采纳,获得10
10秒前
Rondab应助负责小蜜蜂采纳,获得30
10秒前
shenzhou9发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
14秒前
rrgogo发布了新的文献求助10
14秒前
14秒前
酷波er应助展希希采纳,获得10
15秒前
慕青应助xn201120采纳,获得10
16秒前
七七完成签到,获得积分10
16秒前
Della发布了新的文献求助10
17秒前
gogoyoco发布了新的文献求助10
17秒前
符小俊完成签到,获得积分10
19秒前
旷野发布了新的文献求助10
19秒前
mammer完成签到,获得积分10
20秒前
左肩微笑完成签到,获得积分10
20秒前
来来完成签到,获得积分10
22秒前
Cochrane完成签到,获得积分0
22秒前
Hey关闭了Hey文献求助
23秒前
jjjjj完成签到,获得积分20
24秒前
24秒前
8R60d8应助yitai采纳,获得10
25秒前
科研助手6应助yitai采纳,获得10
25秒前
脑洞疼应助man采纳,获得10
25秒前
来来发布了新的文献求助10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176