Exploring the chemical compositions of Fufang Yinhua Jiedu granules based on ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry combined with multistage intelligent data annotation strategy

四极飞行时间 质谱法 色谱法 四极 化学 飞行时间质谱 注释 分析化学(期刊) 材料科学 计算机科学 电喷雾电离 人工智能 物理 有机化学 电离 离子 原子物理学
作者
Lan Yao,Xiu Wang,Yi Nan,Haizhen Liang,Meiyan Wang,Juan Song,Xiaojuan Chen,Baiping Ma
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1728: 465010-465010 被引量:4
标识
DOI:10.1016/j.chroma.2024.465010
摘要

Fufang Yinhua Jiedu granules (FYJG) is a Traditional Chinese Medicine (TCM) compound formulae preparation comprising ten herbal drugs, which has been widely used for the treatment of influenza with wind-heat type and upper respiratory tract infections. However, the phytochemical constituents of FYJG have rarely been reported, and its constituent composition still needs to be elucidated. The complexity of the natural ingredients of TCMs and the diversity of preparations are the major obstacles to fully characterizing their constituents. In this study, an innovative and intelligent analysis strategy was built to comprehensively characterize the constituents of FYJG and assign source attribution to all components. Firstly, a simple and highly efficient ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MSE) method was established to analyze the FYJG and ten single herbs. High-accuracy MS/MS data were acquired under two collision energies using high-definition MSE in the negative and positive modes. Secondly, a multistage intelligent data annotation strategy was developed and used to rapidly screen out and identify the compounds of FYJG, which was integrated with various online software and data processing platforms. The in-house chemical library of 2949 compounds was created and operated in the UNIFI software to enable automatic peak annotation of the MSE data. Then, the acquired MS data were processed by MS-DIAL, and a feature-based molecular networking (FBMN) was constructed on the Global Natural Product Social Molecular Networking (GNPS) to infer potential compositions of FYJG by rapidly classifying and visualizing. It was simultaneously using the MZmine software to recognize the source attribution of ingredients. On this basis, the unique chemical categories and characteristics of herbaceous plant species are utilized further to verify the accuracy of the source attribution of multi-components. This comprehensive analysis successfully identified or tentatively characterized 279 compounds in FYJG, including flavonoids, phenolic acids, coumarins, saponins, alkaloids, lignans, and phenylethanoids. Notably, twelve indole alkaloids and four organic acids from Isatidis Folium were characterized in this formula for the first time. This study demonstrates a potential superiority to identify compounds in complex TCM formulas using high-definition MSE and computer software-assisted structural analysis tools, which can obtain high-quality MS/MS spectra, effectively distinguish isomers, and improve the coverage of trace components. This study elucidates the various components and sources of FYJG and provides a theoretical basis for its further clinical development and application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小柠檬发布了新的文献求助10
1秒前
风思雅完成签到,获得积分10
1秒前
文艺雯发布了新的文献求助30
1秒前
阿尔法完成签到,获得积分10
1秒前
纯真电源完成签到,获得积分20
1秒前
lili完成签到 ,获得积分10
2秒前
2秒前
wanci应助小豆芽儿采纳,获得10
3秒前
麻烦~完成签到,获得积分10
3秒前
4秒前
华仔应助gaos采纳,获得10
4秒前
迪迦发布了新的文献求助30
5秒前
糊涂的勒完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
seven完成签到,获得积分10
5秒前
wzxxxx完成签到,获得积分20
5秒前
6秒前
fffzy完成签到,获得积分10
6秒前
MADKAI发布了新的文献求助50
6秒前
lkn完成签到,获得积分10
6秒前
浦肯野举报单薄凌蝶求助涉嫌违规
7秒前
爱撒娇的橘子完成签到,获得积分10
7秒前
7秒前
Owen应助皮蛋瘦肉周采纳,获得10
8秒前
李漂亮完成签到,获得积分10
8秒前
222完成签到 ,获得积分10
8秒前
wzxxxx发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
文艺谷蓝完成签到,获得积分10
10秒前
丰富的复天完成签到,获得积分10
10秒前
干净的寒天完成签到,获得积分10
10秒前
科研通AI5应助WNL采纳,获得10
11秒前
无聊的面包完成签到,获得积分10
11秒前
11秒前
JIN完成签到,获得积分10
13秒前
Amber应助老疯智采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678