Exploring the chemical compositions of Fufang Yinhua Jiedu granules based on ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry combined with multistage intelligent data annotation strategy

四极飞行时间 质谱法 色谱法 四极 化学 飞行时间质谱 注释 分析化学(期刊) 材料科学 计算机科学 电喷雾电离 人工智能 物理 有机化学 电离 离子 原子物理学
作者
Lan Yao,Xiu Wang,Yi Nan,Haizhen Liang,Meiyan Wang,Juan Song,Xiaojuan Chen,Baiping Ma
出处
期刊:Journal of Chromatography A [Elsevier]
卷期号:1728: 465010-465010 被引量:10
标识
DOI:10.1016/j.chroma.2024.465010
摘要

Fufang Yinhua Jiedu granules (FYJG) is a Traditional Chinese Medicine (TCM) compound formulae preparation comprising ten herbal drugs, which has been widely used for the treatment of influenza with wind-heat type and upper respiratory tract infections. However, the phytochemical constituents of FYJG have rarely been reported, and its constituent composition still needs to be elucidated. The complexity of the natural ingredients of TCMs and the diversity of preparations are the major obstacles to fully characterizing their constituents. In this study, an innovative and intelligent analysis strategy was built to comprehensively characterize the constituents of FYJG and assign source attribution to all components. Firstly, a simple and highly efficient ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MSE) method was established to analyze the FYJG and ten single herbs. High-accuracy MS/MS data were acquired under two collision energies using high-definition MSE in the negative and positive modes. Secondly, a multistage intelligent data annotation strategy was developed and used to rapidly screen out and identify the compounds of FYJG, which was integrated with various online software and data processing platforms. The in-house chemical library of 2949 compounds was created and operated in the UNIFI software to enable automatic peak annotation of the MSE data. Then, the acquired MS data were processed by MS-DIAL, and a feature-based molecular networking (FBMN) was constructed on the Global Natural Product Social Molecular Networking (GNPS) to infer potential compositions of FYJG by rapidly classifying and visualizing. It was simultaneously using the MZmine software to recognize the source attribution of ingredients. On this basis, the unique chemical categories and characteristics of herbaceous plant species are utilized further to verify the accuracy of the source attribution of multi-components. This comprehensive analysis successfully identified or tentatively characterized 279 compounds in FYJG, including flavonoids, phenolic acids, coumarins, saponins, alkaloids, lignans, and phenylethanoids. Notably, twelve indole alkaloids and four organic acids from Isatidis Folium were characterized in this formula for the first time. This study demonstrates a potential superiority to identify compounds in complex TCM formulas using high-definition MSE and computer software-assisted structural analysis tools, which can obtain high-quality MS/MS spectra, effectively distinguish isomers, and improve the coverage of trace components. This study elucidates the various components and sources of FYJG and provides a theoretical basis for its further clinical development and application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小也同学发布了新的文献求助10
刚刚
zqy完成签到,获得积分10
1秒前
华仔应助温暖冰颜采纳,获得10
1秒前
苹果完成签到,获得积分20
1秒前
lacusw完成签到 ,获得积分10
1秒前
Twonej应助Agee_Feng采纳,获得30
1秒前
猪猪hero发布了新的文献求助10
1秒前
zhang03发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
陈打铁完成签到,获得积分10
2秒前
2秒前
2秒前
tianliyan发布了新的文献求助10
2秒前
3秒前
流星完成签到,获得积分10
3秒前
3秒前
粗暴的海豚完成签到,获得积分10
3秒前
英俊的铭应助xxy采纳,获得10
3秒前
陶醉怜容完成签到,获得积分10
3秒前
晚风完成签到,获得积分10
4秒前
Famiglistmo完成签到,获得积分10
4秒前
tachang完成签到,获得积分10
4秒前
赘婿应助深情丸子采纳,获得10
5秒前
spz150完成签到,获得积分10
5秒前
5秒前
Rainlistener完成签到,获得积分10
5秒前
阳光代芙发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
年轻枕头完成签到,获得积分10
6秒前
7秒前
qikkk完成签到,获得积分10
7秒前
7秒前
7秒前
铜豌豆完成签到 ,获得积分10
7秒前
猪猪hero发布了新的文献求助10
8秒前
orixero应助吃饭坐小孩那桌采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629388
求助须知:如何正确求助?哪些是违规求助? 4720032
关于积分的说明 14969548
捐赠科研通 4787503
什么是DOI,文献DOI怎么找? 2556351
邀请新用户注册赠送积分活动 1517486
关于科研通互助平台的介绍 1478188