Weakly Supervised Breast Cancer Classification on WSI Using Transformer and Graph Attention Network

乳腺癌 计算机科学 变压器 图形 人工智能 模式识别(心理学) 癌症 理论计算机科学 医学 内科学 工程类 电压 电气工程
作者
Mingze Li,Bingbing Zhang,Sun Jian,Jianxin Zhang,Bin Liu,Qiang Zhang
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (4)
标识
DOI:10.1002/ima.23125
摘要

ABSTRACT Recently, multiple instance learning (MIL) has been successfully used in weakly supervised breast cancer classification on whole‐slide imaging (WSI) and has become an important assistance for breast cancer diagnosis. However, existing MIL methods have limitations in considering the global contextual information of pathological images. Additionally, their ability to handle spatial relationships among instances should also be improved. Therefore, inspired by transformer and graph deep learning, this study proposes a novel classification method of WSI breast cancer pathological images based on BiFormer and graph attention network (BIMIL‐GAT). In the first stage of instance selection, BiFormer utilizes the two‐stage self‐attention computation mechanism from coarse‐grained region to fine‐grained region to strengthen the global feature extraction ability, which can obtain accurate pivotal instances. Simultaneously, the aim of the second stage is to effectively strengthen the spatial correlation between instances through GAT, thereby improving the accuracy of bag‐level prediction. The experimental results show that BIMIL‐GAT achieves the area under curve (AUC) value of 95.92% on the Cameylon‐16 dataset, which outperforms the baseline model by 3.36%. In addition, our method also shows strong competitiveness in the MSK external extended dataset, which further proves its effectiveness and advancement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欣喜的映雁给欣喜的映雁的求助进行了留言
刚刚
动听的谷秋完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
乜三应助壮观的不言采纳,获得20
2秒前
魔幻的雁完成签到,获得积分10
3秒前
6秒前
Aganlin完成签到 ,获得积分0
6秒前
zz发布了新的文献求助10
6秒前
乐乐应助666666采纳,获得10
7秒前
吃土豆的番茄完成签到,获得积分10
8秒前
10秒前
高大诗柳给高大诗柳的求助进行了留言
12秒前
pms完成签到,获得积分10
12秒前
星辰与月完成签到,获得积分10
12秒前
ding应助超级仇天采纳,获得10
12秒前
123456完成签到,获得积分10
12秒前
漂南仰完成签到,获得积分10
14秒前
好奇小子ivy完成签到,获得积分10
14秒前
叶耶耶完成签到 ,获得积分10
15秒前
充电宝应助Jenny采纳,获得10
15秒前
正直夜安完成签到 ,获得积分10
16秒前
17秒前
共享精神应助TALE采纳,获得10
18秒前
MM完成签到,获得积分10
18秒前
18秒前
稳重的蜡烛完成签到,获得积分10
20秒前
Jasper应助科研通管家采纳,获得10
21秒前
yar应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
充电宝应助科研通管家采纳,获得10
21秒前
Krositon应助科研通管家采纳,获得10
21秒前
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
思源应助科研通管家采纳,获得10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3291731
求助须知:如何正确求助?哪些是违规求助? 2928242
关于积分的说明 8436110
捐赠科研通 2600160
什么是DOI,文献DOI怎么找? 1418904
科研通“疑难数据库(出版商)”最低求助积分说明 660173
邀请新用户注册赠送积分活动 642825