作者
B. Kumaraswamy,K. Hemalatha,Rohit Pal,Gurubasavaraja Swamy Purawarga Matada,Ketan R Hosamani,I. Aayishamma,Nimmagadda Venkata Satya Sai Aishwarya
摘要
Quinolones, a key class of heterocyclics, are gaining popularity among organic and medicinal chemists due to their promising properties. Quinoline, with its broad spectrum of action, plays a primordial role in chemotherapy for cancer. Drugs include lenvatinib and its structural derivatives carbozantinib and bosutinib, and tipifarnib are the popular anticancer agents. Owing to the importance of quinoline, there are several classical methods for the synthesis such as, such as Gould-Jacobs, Conrad-Limpach, Camps cyclization, Skraup, Doebnervon Miller, Combes, Friedlander, Pfitzinger, and Niementowski synthesis. These methods are well-commended for developing an infinite variety of quinoline analogues. However, these procedures are associated with several drawbacks such as long reaction times, use of hazardous chemicals or stoichiometric proportions, difficulty of working up conditions, high temperatures, organic solvents, and the presence of numerous steps, all of which have an impact on the environment and the economy. As a result, researchers are working hard to develop green quinoline compounds in the hopes of making groundbreaking discoveries in the realm of cancer. In this review, we have highlighted significant research on quinoline-based compounds and their structure-activity relationship (SAR). Furthermore, because of the significant economic and environmental health and safety (EHS) concerns, more research is being dedicated to the green synthesis of quinolone derivatives. The current review offers recent advances in quinoline derivatives as anticancer agents for green synthesis using microwave, ultrasound, and one-pot synthesis. We believe that our findings will provide useful insight and inspire more green research on this framework to produce powerful and selective quinoline derivatives.