Wheat Yield Prediction Using Machine Learning Method Based on UAV Remote Sensing Data

产量(工程) 计算机科学 机器学习 遥感 人工智能 地理 材料科学 冶金
作者
Shurong Yang,Lei Li,Shuaipeng Fei,Mengjiao Yang,Zhiqiang Tao,Yaxiong Meng,Yonggui Xiao
出处
期刊:Drones [Multidisciplinary Digital Publishing Institute]
卷期号:8 (7): 284-284 被引量:5
标识
DOI:10.3390/drones8070284
摘要

Accurate forecasting of crop yields holds paramount importance in guiding decision-making processes related to breeding efforts. Despite significant advancements in crop yield forecasting, existing methods often struggle with integrating diverse sensor data and achieving high prediction accuracy under varying environmental conditions. This study focused on the application of multi-sensor data fusion and machine learning algorithms based on unmanned aerial vehicles (UAVs) in wheat yield prediction. Five machine learning (ML) algorithms, namely random forest (RF), partial least squares (PLS), ridge regression (RR), k-nearest neighbor (KNN) and extreme gradient boosting decision tree (XGboost), were utilized for multi-sensor data fusion, together with three ensemble methods including the second-level ensemble methods (stacking and feature-weighted) and the third-level ensemble method (simple average), for wheat yield prediction. The 270 wheat hybrids were used as planting materials under full and limited irrigation treatments. A cost-effective multi-sensor UAV platform, equipped with red–green–blue (RGB), multispectral (MS), and thermal infrared (TIR) sensors, was utilized to gather remote sensing data. The results revealed that the XGboost algorithm exhibited outstanding performance in multi-sensor data fusion, with the RGB + MS + Texture + TIR combination demonstrating the highest fusion performance (R2 = 0.660, RMSE = 0.754). Compared with the single ML model, the employment of three ensemble methods significantly enhanced the accuracy of wheat yield prediction. Notably, the third-layer simple average ensemble method demonstrated superior performance (R2 = 0.733, RMSE = 0.668 t ha−1). It significantly outperformed both the second-layer ensemble methods of stacking (R2 = 0.668, RMSE = 0.673 t ha−1) and feature-weighted (R2 = 0.667, RMSE = 0.674 t ha−1), thereby exhibiting superior predictive capabilities. This finding highlighted the third-layer ensemble method’s ability to enhance predictive capabilities and refined the accuracy of wheat yield prediction through simple average ensemble learning, offering a novel perspective for crop yield prediction and breeding selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiayi完成签到,获得积分20
刚刚
孤独的AD钙完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
云漫山发布了新的文献求助10
2秒前
哈哈发布了新的文献求助10
4秒前
mylaodao完成签到,获得积分0
6秒前
阿九发布了新的文献求助10
7秒前
SMLW完成签到,获得积分10
7秒前
8秒前
许言完成签到,获得积分10
8秒前
曹骏轩完成签到,获得积分20
8秒前
鸡蛋花干夹馍完成签到,获得积分10
8秒前
zc完成签到,获得积分10
10秒前
Krsky完成签到,获得积分10
10秒前
想好好搞事业完成签到,获得积分10
11秒前
SciGPT应助研友_ngJQzL采纳,获得10
11秒前
我的miemie应助JerryZ采纳,获得10
12秒前
年轻凡双完成签到,获得积分20
12秒前
C7_完成签到 ,获得积分10
12秒前
Lowe完成签到,获得积分10
13秒前
14秒前
飘逸数据线完成签到,获得积分10
14秒前
16秒前
tsntn完成签到,获得积分10
16秒前
17秒前
weilucking完成签到,获得积分10
19秒前
19秒前
19秒前
嗯嗯嗯发布了新的文献求助10
20秒前
anders完成签到 ,获得积分10
20秒前
脑洞疼应助梁皓然采纳,获得10
20秒前
曹骏轩发布了新的文献求助10
22秒前
梦灵发布了新的文献求助10
22秒前
zyj发布了新的文献求助10
22秒前
23秒前
研友_ngJQzL发布了新的文献求助10
24秒前
Jasper应助bluesea采纳,获得100
26秒前
科研废物完成签到 ,获得积分10
27秒前
田茂青发布了新的文献求助10
28秒前
高兴的彩虹完成签到,获得积分10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958130
求助须知:如何正确求助?哪些是违规求助? 3504312
关于积分的说明 11117892
捐赠科研通 3235623
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547