Wheat Yield Prediction Using Machine Learning Method Based on UAV Remote Sensing Data

产量(工程) 计算机科学 机器学习 遥感 人工智能 地理 材料科学 冶金
作者
Shurong Yang,Lei Li,Shuaipeng Fei,Mengjiao Yang,Zhiqiang Tao,Yaxiong Meng,Yonggui Xiao
出处
期刊:Drones [MDPI AG]
卷期号:8 (7): 284-284 被引量:5
标识
DOI:10.3390/drones8070284
摘要

Accurate forecasting of crop yields holds paramount importance in guiding decision-making processes related to breeding efforts. Despite significant advancements in crop yield forecasting, existing methods often struggle with integrating diverse sensor data and achieving high prediction accuracy under varying environmental conditions. This study focused on the application of multi-sensor data fusion and machine learning algorithms based on unmanned aerial vehicles (UAVs) in wheat yield prediction. Five machine learning (ML) algorithms, namely random forest (RF), partial least squares (PLS), ridge regression (RR), k-nearest neighbor (KNN) and extreme gradient boosting decision tree (XGboost), were utilized for multi-sensor data fusion, together with three ensemble methods including the second-level ensemble methods (stacking and feature-weighted) and the third-level ensemble method (simple average), for wheat yield prediction. The 270 wheat hybrids were used as planting materials under full and limited irrigation treatments. A cost-effective multi-sensor UAV platform, equipped with red–green–blue (RGB), multispectral (MS), and thermal infrared (TIR) sensors, was utilized to gather remote sensing data. The results revealed that the XGboost algorithm exhibited outstanding performance in multi-sensor data fusion, with the RGB + MS + Texture + TIR combination demonstrating the highest fusion performance (R2 = 0.660, RMSE = 0.754). Compared with the single ML model, the employment of three ensemble methods significantly enhanced the accuracy of wheat yield prediction. Notably, the third-layer simple average ensemble method demonstrated superior performance (R2 = 0.733, RMSE = 0.668 t ha−1). It significantly outperformed both the second-layer ensemble methods of stacking (R2 = 0.668, RMSE = 0.673 t ha−1) and feature-weighted (R2 = 0.667, RMSE = 0.674 t ha−1), thereby exhibiting superior predictive capabilities. This finding highlighted the third-layer ensemble method’s ability to enhance predictive capabilities and refined the accuracy of wheat yield prediction through simple average ensemble learning, offering a novel perspective for crop yield prediction and breeding selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奇奇完成签到,获得积分10
1秒前
2秒前
岩鹰完成签到,获得积分10
3秒前
3秒前
jyj发布了新的文献求助10
3秒前
无限莫言发布了新的文献求助10
3秒前
4秒前
小橘子发布了新的文献求助10
4秒前
4秒前
成帅哥发布了新的文献求助10
4秒前
5秒前
西一兮完成签到,获得积分10
5秒前
爆米花应助合适海云采纳,获得10
5秒前
Hello应助三木采纳,获得10
6秒前
orixero应助小汤采纳,获得10
6秒前
周欣完成签到 ,获得积分10
6秒前
7秒前
maox1aoxin应助研友_ZAVbe8采纳,获得60
7秒前
孙成功完成签到,获得积分10
8秒前
咯咯咯完成签到,获得积分10
8秒前
cij123发布了新的文献求助10
8秒前
kekeji完成签到 ,获得积分10
9秒前
9秒前
JING发布了新的文献求助30
9秒前
七月完成签到 ,获得积分10
10秒前
情怀应助pb采纳,获得10
10秒前
10秒前
11秒前
科研小白白应助en采纳,获得10
11秒前
Caicai关注了科研通微信公众号
12秒前
12秒前
13秒前
HCLonely应助宝元求文献采纳,获得10
13秒前
14秒前
15秒前
15秒前
白嫖论文发布了新的文献求助10
15秒前
hujin发布了新的文献求助10
15秒前
易易完成签到,获得积分10
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231987
求助须知:如何正确求助?哪些是违规求助? 2878991
关于积分的说明 8208546
捐赠科研通 2546450
什么是DOI,文献DOI怎么找? 1375985
科研通“疑难数据库(出版商)”最低求助积分说明 647507
邀请新用户注册赠送积分活动 622675