作者
Jinyang Shi,Xinhua Cui,Yang Wang,Yuli Song,Xudong Tang,Junwen Fan,Hongyue Xu,Mingmei Zhu,Wanlu Yu,Lu Yu
摘要
Background: To date, disease-modifying antirheumatic drugs (DMARDs) are widely used as the primary first-line treatment option for patients with rheumatoid arthritis (RA), and the curative effect of methotrexate (MTX) and leflunomide (LEF; MTX + LEF) is greater than that of single-agent MTX therapy, but the synergistic mechanism of MTX + LEF is unclear. Methods: First, we explored the mechanism of action of MTX + LEF in RA through network pharmacology and molecular docking. Venn diagram analysis revealed 97 overlapping gene targets of MTX + LEF-RA and STRING, along with Cytoscape plug-in MOCDE and cytoHubba; and GO enrichment analysis revealed that the functions of 97 synergistic targets were related to 123 molecular functions (MF), 63 cell components (CC), and 1,068 biological processes (BP). The Cytoscape plug-in ClueGO demonstrated that these targets were enriched in KEGG pathways of 52 terms, whereas 9 pivotal genes were mainly involved in the signaling pathways of estrogen, Ras, Rap1, PI3K-Akt, relaxin, TNF, AMPK, FoxO, prolactin, IL-17, and adherens junction. Finally, CETSA and DARTS validated the direct binding of MTX or LEF to the selected target proteins EGFR, PPARG, MMP9, and SRC in RAW264.7 cells. Results: We identified 292 MTX targets and 247 LEF targets from 7 databases. Furthermore, 2,814 potential targets of RA were identified by merging 1,925 targets from 7 databases and 999 differentially expressed genes (DEGs) between normal controls and patients with RA extracted from 5 GEO databases. Nine pivotal genes, ESR1, ALB, CASP3, EGFR, HSP90AA1, SRC, MMP9, PPARG, and IGF1, were identified. Molecular docking verified that both MTX and LEF strongly bind to most of the 9 pivotal proteins except ESR1 and IGF1. Conclusion: These results contribute to our understanding of the enhancement mechanism of MTX combined with LEF and provide a targeted basis for the clinical treatment of RA.