Large language models (LLMs), such as ChatGPT, have taken the world by storm. However, LLMs are not limited to human language and can be used to analyze sequential data, such as DNA, protein, and gene expression. The resulting foundation models can be repurposed to identify the complex patterns within the data, resulting in powerful, multipurpose prediction tools able to predict the state of cellular systems. This review outlines the different types of LLMs and showcases their recent uses in biology. Since LLMs have not yet been embraced by the plant community, we also cover how these models can be deployed for the plant kingdom.