Research of Models and Algorithms of Systems for Localization of Magnetic Anomalies Sources

磁强计 软件 磁异常 计算机科学 异常(物理) 数据处理 地球物理学 算法 异常检测 数据挖掘 磁偶极子 数学模型 偶极子 磁场 物理 数学 统计 量子力学 程序设计语言 凝聚态物理 操作系统
作者
Olexandr S. Kriachok,Nataliia V. Makarenko
出处
期刊:Control systems and computers [National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)]
卷期号: (1 (305)): 62-72
标识
DOI:10.15407/csc.2024.01.062
摘要

Introduction. The application of modern geophysical methods are caused by the challenges of nowadays Ukraine standing with. The high efficiency of geophysical research is shown by the methods of magnetic exploration. Method of analyzing the array of data from the magnetometer is used to localize the magnetic anomaly’s sources. Such localization is implemented by using various mathematical models and algorithms of software systems. Purpose. The aim of the article is to show an overview of mathematical models and algorithms for the localization of magnetic anomalies’ sources (disturbances). They allow to speed up the processing of magnetometric research’s data and visualize the obtained results. Methods. The article examines the mathematical models of the magnetic anomaly< such as magnetic dipole model, the Gaussian model, the Schwartz model. The multilayer model, and also provides the overview of the main methods for the localization of the described anomaly – the filtering method, the least square method, the gradient analysis method. A list of software and online resources is given, this software is used to analyze magnetometer data and locate magnetic anomalies’ sources. Results. Four mathematical models of magnetic anomalies that allow describing objects of various configurations are considered in the article, and the main methods of determining these objects in the magnetometer data array are given. The article presents the most popular software used for magnetometric data processing. Most of the software is used in geophysics for deep research and requires significant computing resources. A software application was proposed and developed. It allows importing data from the moving platform and magnetometer, analyzing data and visualizing the results. Conclusion. The results of the review emphasize the importance of improving existing mathematical models and developing specialized software for magnetic anomalies’ source localization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llls完成签到 ,获得积分10
1秒前
zzz发布了新的文献求助20
3秒前
老实的栾完成签到,获得积分10
4秒前
4秒前
4秒前
小鱼儿完成签到,获得积分10
5秒前
玩家完成签到,获得积分20
9秒前
10秒前
孟梦发布了新的文献求助30
11秒前
abbsdan发布了新的文献求助10
11秒前
活泼新儿完成签到 ,获得积分10
13秒前
云上人发布了新的文献求助10
15秒前
王博士完成签到 ,获得积分10
16秒前
852应助冰水混合物煮香菇采纳,获得10
19秒前
英俊的铭应助李白采纳,获得10
20秒前
21秒前
liyang999发布了新的文献求助10
21秒前
章鱼博士完成签到,获得积分20
22秒前
孟梦完成签到,获得积分10
25秒前
26秒前
打打应助科研通管家采纳,获得10
27秒前
0128lun应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
充电宝应助科研通管家采纳,获得10
27秒前
英姑应助科研通管家采纳,获得10
27秒前
香蕉觅云应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
xzy998应助科研通管家采纳,获得10
27秒前
Lucas应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
27秒前
科目三应助科研通管家采纳,获得10
27秒前
tuanheqi应助科研通管家采纳,获得50
27秒前
华仔应助科研通管家采纳,获得10
27秒前
zengyiyong发布了新的文献求助10
32秒前
liyang999完成签到,获得积分10
34秒前
Jiayee发布了新的文献求助20
34秒前
zzz完成签到,获得积分20
34秒前
35秒前
35秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136744
求助须知:如何正确求助?哪些是违规求助? 2787779
关于积分的说明 7783154
捐赠科研通 2443843
什么是DOI,文献DOI怎么找? 1299466
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954