Fault diagnosis of rolling bearings under varying speeds based on gray level co-occurrence matrix and DCCNN

共现矩阵 灰度级 断层(地质) 灰色(单位) 基质(化学分析) 工程类 计算机科学 地质学 人工智能 材料科学 地震学 复合材料 医学 图像纹理 图像(数学) 放射科 图像处理
作者
Fang Liu,Liang Chen,Zhihao Guo,Weizheng Zhao,Xinyu Huang,Qihao Zhou,Feiyun Cong
出处
期刊:Measurement [Elsevier]
卷期号:235: 114955-114955 被引量:4
标识
DOI:10.1016/j.measurement.2024.114955
摘要

Rolling bearings are widely used in various industries, including rail transit, aerospace, and wind power generation, playing a critical role. However, bearing failures can lead to serious consequences, impacting equipment operation and even causing safety accidents. Hence, the diagnosis of bearing faults is of utmost importance. However, the variable speed conditions experienced during bearing operation pose significant challenges to fault diagnosis. To overcome the limitations of traditional methods in diagnosing bearing faults under variable speed conditions, this paper proposes a fault diagnosis method based on the gray-level co-occurrence matrix (GLCM) and Dual Channel Convolutional Neural Network (DCCNN). The method introduces a two-dimensional grayscale matrix construction (2D-GMC) technique to extract grayscale texture features for fault diagnosis. Additionally, an unconventional kernel design method, based on grayscale image contrast, is proposed to reduce the complexity associated with traditional square kernels. A new DCCNN architecture is developed accordingly. Furthermore, the transfer learning concept is utilized to train the proposed DCCNN model using fault signals at specific rotational speeds. The method intercepts the variable speed into multi-speed short-time series, then constructs gray image under different speed to realize the rapid fault diagnosis of bearings under variable speed conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
上官若男应助一一采纳,获得10
1秒前
wyt发布了新的文献求助10
1秒前
似水无痕发布了新的文献求助10
1秒前
不周发布了新的文献求助10
2秒前
2秒前
华仔应助陈嘻嘻嘻嘻采纳,获得10
4秒前
隐形幻竹发布了新的文献求助30
4秒前
PP发布了新的文献求助10
4秒前
4秒前
魔幻的小松鼠完成签到,获得积分10
5秒前
亮仔发布了新的文献求助10
6秒前
险胜应助Eleanor采纳,获得10
6秒前
Lucas应助深情的mewmew采纳,获得10
6秒前
6秒前
称心天川完成签到 ,获得积分10
7秒前
闪闪糖豆发布了新的文献求助10
7秒前
7秒前
伶俐从筠应助木mao采纳,获得10
9秒前
10秒前
CipherSage应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
科研通AI2S应助猜不猜不采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
11秒前
orixero应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
asdxsweef应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
Ao应助科研通管家采纳,获得160
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305951
求助须知:如何正确求助?哪些是违规求助? 2939805
关于积分的说明 8494633
捐赠科研通 2614075
什么是DOI,文献DOI怎么找? 1427938
科研通“疑难数据库(出版商)”最低求助积分说明 663212
邀请新用户注册赠送积分活动 648035