Predicting CD27 expression and clinical prognosis in serous ovarian cancer using CT-based radiomics

医学 无线电技术 卵巢癌 浆液性卵巢癌 浆液性液体 生殖医学 内科学 肿瘤科 放射科 妇科 病理 癌症 怀孕 遗传学 生物
作者
Chen Zhang,Heng Cui,Yi Li,Xiaohong Chang
出处
期刊:Journal of Ovarian Research [Springer Nature]
卷期号:17 (1)
标识
DOI:10.1186/s13048-024-01456-7
摘要

Abstract Background This study aimed to develop and evaluate radiomics models to predict CD27 expression and clinical prognosis before surgery in patients with serous ovarian cancer (SOC). Methods We used transcriptome sequencing data and contrast-enhanced computed tomography images of patients with SOC from The Cancer Genome Atlas ( n = 339) and The Cancer Imaging Archive ( n = 57) and evaluated the clinical significance and prognostic value of CD27 expression. Radiomics features were selected to create a recursive feature elimination-logistic regression (RFE-LR) model and a least absolute shrinkage and selection operator logistic regression (LASSO-LR) model for CD27 expression prediction. Results CD27 expression was upregulated in tumor samples, and a high expression level was determined to be an independent protective factor for survival. A set of three and six radiomics features were extracted to develop RFE-LR and LASSO-LR radiomics models, respectively. Both models demonstrated good calibration and clinical benefits, as determined by the receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis. The LASSO-LR model performed better than the RFE-LR model, owing to the area under the curve (AUC) values of the ROC curves (0.829 vs. 0.736). Furthermore, the AUC value of the radiomics score that predicted the overall survival of patients with SOC diagnosed after 60 months was 0.788 using the LASSO-LR model. Conclusion The radiomics models we developed are promising noninvasive tools for predicting CD27 expression status and SOC prognosis. The LASSO-LR model is highly recommended for evaluating the preoperative risk stratification for SOCs in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研狗完成签到 ,获得积分10
2秒前
3秒前
5秒前
7秒前
和谐的敏发布了新的文献求助10
8秒前
西瓜汁完成签到,获得积分10
8秒前
超级行恶发布了新的文献求助10
8秒前
田様应助Rrr采纳,获得30
8秒前
9秒前
10秒前
Miyya完成签到 ,获得积分10
10秒前
nicky完成签到 ,获得积分10
10秒前
ZERO完成签到,获得积分10
12秒前
strelias完成签到,获得积分20
12秒前
12秒前
liuhui完成签到 ,获得积分10
13秒前
strelias发布了新的文献求助10
15秒前
Akim应助钙钛矿科研狗采纳,获得10
15秒前
林好人完成签到,获得积分10
15秒前
壮观复天完成签到,获得积分10
15秒前
在望完成签到,获得积分10
16秒前
18秒前
19秒前
Chief完成签到,获得积分10
20秒前
小米完成签到,获得积分10
21秒前
和谐的敏完成签到,获得积分10
21秒前
22秒前
冷沫幽夏发布了新的文献求助10
22秒前
小二郎应助Viva采纳,获得10
22秒前
ycp完成签到,获得积分10
22秒前
慢歌完成签到 ,获得积分10
22秒前
Arthur完成签到 ,获得积分10
22秒前
谦让的慕凝完成签到 ,获得积分10
22秒前
kk发布了新的文献求助10
25秒前
不要香菜发布了新的文献求助10
25秒前
氨基酸脱氨完成签到,获得积分10
26秒前
郑思榆完成签到 ,获得积分10
27秒前
27秒前
精神小伙完成签到 ,获得积分10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
探索化学的奥秘:电子结构方法 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788210
关于积分的说明 7784949
捐赠科研通 2444164
什么是DOI,文献DOI怎么找? 1299822
科研通“疑难数据库(出版商)”最低求助积分说明 625576
版权声明 601011