Describing a complex primary health care population to support future decision support initiatives

临床决策支持系统 医疗保健 决策支持系统 人口 人口健康 利益相关者 家庭医学 护理部 医学 社区卫生 公共卫生 环境卫生 数据挖掘 计算机科学 公共关系 政治学 经济 经济增长
作者
Jacqueline K. Kueper,Jennifer Rayner,Merrick Zwarenstein,Daniel J. Lizotte
出处
期刊:International Journal for Population Data Science [Swansea University]
卷期号:7 (1) 被引量:4
标识
DOI:10.23889/ijpds.v7i1.1756
摘要

IntroductionDeveloping decision support tools using data from a health care organization, to support care within that organization, is a promising paradigm to improve care delivery and population health. Descriptive epidemiology may be a valuable supplement to stakeholder input towards selection of potential initiatives and to inform methodological decisions throughout tool development. We additionally propose that to properly characterize complex populations in large-scale descriptive studies, both simple statistical and machine learning techniques can be useful. ObjectiveTo describe sociodemographic, clinical, and health care use characteristics of primary care clients served by the Alliance for Healthier Communities, which provides team-based primary health care through Community Health Centres (CHCs) across Ontario, Canada. MethodsWe used electronic health record data from adult ongoing primary care clients served by CHCs in 2009-2019. We performed traditional table-based summaries for each characteristic; and applied three unsupervised learning techniques to explore patterns of common condition co-occurrence, care provider teams, and care frequency. ResultsThere were 221,047 eligible clients. Sociodemographics: We described 13 characteristics, stratified by CHC type and client multimorbidity status. Clinical characteristics: Eleven-year prevalence of 24 investigated conditions ranged from 1% (Hepatitis C) to 63% (chronic musculoskeletal problem) with non-uniform risk across the care history; multimorbidity was common (81%) with variable co-occurrence patterns. Health care use characteristics: Most care was provided by physician and nursing providers, with heterogeneous combinations of other provider types. A subset of clients had many issues addressed within single-visits and there was within- and between-client variability in care frequency. In addition to substantive findings, we discuss methodological considerations for future decision support initiatives. ConclusionsWe demonstrated the use of methods from statistics and machine learning, applied with an epidemiological lens, to provide an overview of a complex primary care population and lay a foundation for stakeholder engagement and decision support tool development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
烟花应助yry采纳,获得10
2秒前
彩色一手发布了新的文献求助10
3秒前
4秒前
蔡蔡发布了新的文献求助10
4秒前
4秒前
lkk关闭了lkk文献求助
5秒前
hulin_zjxu完成签到,获得积分10
5秒前
pluto应助直率芷巧采纳,获得100
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
kingwill应助科研通管家采纳,获得20
8秒前
华仔应助科研通管家采纳,获得10
8秒前
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
8秒前
Anan应助科研通管家采纳,获得20
8秒前
天天快乐应助科研通管家采纳,获得10
9秒前
9秒前
思源应助ShengzhangLiu采纳,获得10
9秒前
Jandy完成签到 ,获得积分10
10秒前
Lxr完成签到 ,获得积分10
18秒前
lkk关闭了lkk文献求助
18秒前
19秒前
19秒前
开门啊菇凉完成签到,获得积分0
22秒前
ShengzhangLiu发布了新的文献求助10
25秒前
26秒前
ZLXLXX完成签到,获得积分10
26秒前
27秒前
170tianyu发布了新的文献求助10
27秒前
31秒前
31秒前
Zoey发布了新的文献求助30
33秒前
之外完成签到 ,获得积分10
33秒前
完美世界应助冰冷天蝎座采纳,获得10
37秒前
脑洞疼应助四憙采纳,获得10
42秒前
43秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
临床微生物检验问与答 (第二版), 人民卫生出版社, 2014:146 500
Green building development for a sustainable environment with artificial intelligence technology 500
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Med Surg Certification Review Book: 3 Practice Tests and CMSRN Study Guide for the Medical Surgical (RN-BC) Exam [5th Edition] 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350975
求助须知:如何正确求助?哪些是违规求助? 2976530
关于积分的说明 8675444
捐赠科研通 2657683
什么是DOI,文献DOI怎么找? 1455204
科研通“疑难数据库(出版商)”最低求助积分说明 673739
邀请新用户注册赠送积分活动 664242