DFX: A Low-latency Multi-FPGA Appliance for Accelerating Transformer-based Text Generation

计算机科学 现场可编程门阵列 自动汇总 代码生成 设计空间探索 延迟(音频) 加速 变压器 瓶颈 并行计算 计算机硬件 计算机体系结构 嵌入式系统 人工智能 操作系统 物理 电压 电信 量子力学 钥匙(锁)
作者
Seongmin Hong,Seungjae Moon,Junsoo Kim,Sungjae Lee,Minsub Kim,Dongsoo Lee,Joo-Young Kim
标识
DOI:10.1109/micro56248.2022.00051
摘要

Transformer is a deep learning language model widely used for natural language processing (NLP) services in datacenters. Among transformer models, Generative Pretrained Transformer (GPT) has achieved remarkable performance in text generation, or natural language generation (NLG), which needs the processing of a large input context in the summarization stage, followed by the generation stage that produces a single word at a time. The conventional platforms such as GPU are specialized for the parallel processing of large inputs in the summarization stage, but their performance significantly degrades in the generation stage due to its sequential characteristic. Therefore, an efficient hardware platform is required to address the high latency caused by the sequential characteristic of text generation. In this paper, we present DFX, a multi-FPGA acceleration appliance that executes GPT-2 model inference end-to-end with low latency and high throughput in both summarization and generation stages. DFX uses model parallelism and optimized dataflow that is model-and-hardware-aware for fast simultaneous workload execution among devices. Its compute cores operate on custom instructions and provide GPT-2 operations end-to-end. We implement the proposed hardware architecture on four Xilinx Alveo U280 FPGAs and utilize all of the channels of the high bandwidth memory (HBM) and the maximum number of compute resources for high hardware efficiency. DFX achieves 5.58$\times$ speedup and 3.99$\times$ energy efficiency over four NVIDIA V100 GPUs on the modern GPT-2 model. DFX is also 8.21$\times$ more cost-effective than the GPU appliance, suggesting that it is a promising solution for text generation workloads in cloud datacenters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
第一个相遇完成签到,获得积分10
1秒前
1秒前
2秒前
科研通AI6.1应助Gc采纳,获得10
2秒前
geo完成签到 ,获得积分10
3秒前
不能没有科研完成签到,获得积分10
3秒前
3秒前
李健的小迷弟应助Royalll采纳,获得30
4秒前
研友_ZelDDn完成签到,获得积分20
4秒前
5秒前
Zel博博完成签到,获得积分10
5秒前
5秒前
5秒前
桐桐应助小何采纳,获得10
5秒前
大模型应助肖邦采纳,获得150
6秒前
蓝天应助涨知识ing采纳,获得10
6秒前
7秒前
7秒前
8秒前
9秒前
9秒前
拉拉霍霍发布了新的文献求助10
9秒前
小蘑菇应助凶凶采纳,获得10
9秒前
Ava应助研友_ZelDDn采纳,获得10
10秒前
ZZZ发布了新的文献求助10
10秒前
10秒前
慕青应助Kate采纳,获得10
10秒前
CipherSage应助阿紫采纳,获得10
11秒前
cqwswfl完成签到,获得积分10
11秒前
zzz完成签到,获得积分10
11秒前
ttt发布了新的文献求助10
12秒前
完美梨愁发布了新的文献求助10
12秒前
过柱菜鸟发布了新的文献求助10
12秒前
暮时完成签到,获得积分10
12秒前
刘胖胖发布了新的文献求助10
12秒前
bkagyin应助longL采纳,获得10
13秒前
JM完成签到,获得积分10
13秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106