DFX: A Low-latency Multi-FPGA Appliance for Accelerating Transformer-based Text Generation

计算机科学 现场可编程门阵列 自动汇总 代码生成 设计空间探索 延迟(音频) 加速 变压器 瓶颈 并行计算 计算机硬件 计算机体系结构 嵌入式系统 人工智能 操作系统 物理 电压 电信 量子力学 钥匙(锁)
作者
Seongmin Hong,Seungjae Moon,Junsoo Kim,Sungjae Lee,Minsub Kim,Dongsoo Lee,Joo-Young Kim
标识
DOI:10.1109/micro56248.2022.00051
摘要

Transformer is a deep learning language model widely used for natural language processing (NLP) services in datacenters. Among transformer models, Generative Pretrained Transformer (GPT) has achieved remarkable performance in text generation, or natural language generation (NLG), which needs the processing of a large input context in the summarization stage, followed by the generation stage that produces a single word at a time. The conventional platforms such as GPU are specialized for the parallel processing of large inputs in the summarization stage, but their performance significantly degrades in the generation stage due to its sequential characteristic. Therefore, an efficient hardware platform is required to address the high latency caused by the sequential characteristic of text generation. In this paper, we present DFX, a multi-FPGA acceleration appliance that executes GPT-2 model inference end-to-end with low latency and high throughput in both summarization and generation stages. DFX uses model parallelism and optimized dataflow that is model-and-hardware-aware for fast simultaneous workload execution among devices. Its compute cores operate on custom instructions and provide GPT-2 operations end-to-end. We implement the proposed hardware architecture on four Xilinx Alveo U280 FPGAs and utilize all of the channels of the high bandwidth memory (HBM) and the maximum number of compute resources for high hardware efficiency. DFX achieves 5.58$\times$ speedup and 3.99$\times$ energy efficiency over four NVIDIA V100 GPUs on the modern GPT-2 model. DFX is also 8.21$\times$ more cost-effective than the GPU appliance, suggesting that it is a promising solution for text generation workloads in cloud datacenters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助梅菜菜采纳,获得10
1秒前
小贝发布了新的文献求助10
1秒前
天天快乐应助豆豆采纳,获得10
1秒前
2秒前
美好芳发布了新的文献求助10
2秒前
胡德完成签到 ,获得积分10
2秒前
2秒前
2秒前
慕青应助成懂事长采纳,获得30
2秒前
3秒前
Sli发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
毛毛发布了新的文献求助10
3秒前
科目三应助无名小卒每文采纳,获得10
4秒前
徐凤年完成签到,获得积分10
4秒前
秦照荃完成签到,获得积分20
4秒前
不知道发布了新的文献求助10
4秒前
xiong0823发布了新的文献求助10
5秒前
Emma完成签到,获得积分10
5秒前
5秒前
6秒前
feiyuzhang完成签到,获得积分10
6秒前
QingS应助笑忘书。采纳,获得10
6秒前
jake完成签到,获得积分10
6秒前
可爱的函函应助科研痛采纳,获得10
6秒前
积极的Cindy完成签到,获得积分10
7秒前
Ttsn发布了新的文献求助10
7秒前
乐乐应助幸福的道天采纳,获得10
7秒前
7秒前
延开完成签到,获得积分10
7秒前
代沁发布了新的文献求助10
8秒前
8秒前
路首发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
摩尔曼斯克完成签到,获得积分10
8秒前
wy发布了新的文献求助10
8秒前
skyziy完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933