清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DFX: A Low-latency Multi-FPGA Appliance for Accelerating Transformer-based Text Generation

计算机科学 现场可编程门阵列 自动汇总 代码生成 设计空间探索 延迟(音频) 加速 变压器 瓶颈 并行计算 计算机硬件 计算机体系结构 嵌入式系统 人工智能 操作系统 物理 电压 电信 量子力学 钥匙(锁)
作者
Seongmin Hong,Seungjae Moon,Junsoo Kim,Sungjae Lee,Minsub Kim,Dongsoo Lee,Joo-Young Kim
标识
DOI:10.1109/micro56248.2022.00051
摘要

Transformer is a deep learning language model widely used for natural language processing (NLP) services in datacenters. Among transformer models, Generative Pretrained Transformer (GPT) has achieved remarkable performance in text generation, or natural language generation (NLG), which needs the processing of a large input context in the summarization stage, followed by the generation stage that produces a single word at a time. The conventional platforms such as GPU are specialized for the parallel processing of large inputs in the summarization stage, but their performance significantly degrades in the generation stage due to its sequential characteristic. Therefore, an efficient hardware platform is required to address the high latency caused by the sequential characteristic of text generation. In this paper, we present DFX, a multi-FPGA acceleration appliance that executes GPT-2 model inference end-to-end with low latency and high throughput in both summarization and generation stages. DFX uses model parallelism and optimized dataflow that is model-and-hardware-aware for fast simultaneous workload execution among devices. Its compute cores operate on custom instructions and provide GPT-2 operations end-to-end. We implement the proposed hardware architecture on four Xilinx Alveo U280 FPGAs and utilize all of the channels of the high bandwidth memory (HBM) and the maximum number of compute resources for high hardware efficiency. DFX achieves 5.58$\times$ speedup and 3.99$\times$ energy efficiency over four NVIDIA V100 GPUs on the modern GPT-2 model. DFX is also 8.21$\times$ more cost-effective than the GPU appliance, suggesting that it is a promising solution for text generation workloads in cloud datacenters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
heisa完成签到,获得积分10
1分钟前
1分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
斯文败类应助萝卜猪采纳,获得10
2分钟前
2分钟前
萝卜猪发布了新的文献求助10
2分钟前
激动的似狮完成签到,获得积分10
2分钟前
zero完成签到,获得积分10
2分钟前
2分钟前
烨枫晨曦完成签到,获得积分10
2分钟前
zero发布了新的文献求助10
3分钟前
萝卜猪完成签到,获得积分10
3分钟前
new1完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助50
4分钟前
顾建瑜完成签到,获得积分20
4分钟前
顾建瑜发布了新的文献求助10
4分钟前
FashionBoy应助顾建瑜采纳,获得10
5分钟前
monica366完成签到,获得积分10
6分钟前
传奇3应助mumu采纳,获得10
6分钟前
6分钟前
6分钟前
xiaoleihu完成签到 ,获得积分10
6分钟前
Boren发布了新的文献求助10
6分钟前
ljx完成签到 ,获得积分10
6分钟前
狂野的含烟完成签到 ,获得积分10
6分钟前
SDNUDRUG完成签到,获得积分10
6分钟前
Boren完成签到,获得积分10
6分钟前
7分钟前
mumu发布了新的文献求助10
7分钟前
mumu完成签到 ,获得积分10
7分钟前
7分钟前
洒家完成签到 ,获得积分10
7分钟前
达克赛德完成签到 ,获得积分10
7分钟前
7分钟前
好的名字能让牛马更好地工作完成签到,获得积分10
7分钟前
8分钟前
GPTea应助科研通管家采纳,获得20
8分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5105312
求助须知:如何正确求助?哪些是违规求助? 4315236
关于积分的说明 13444232
捐赠科研通 4143830
什么是DOI,文献DOI怎么找? 2270695
邀请新用户注册赠送积分活动 1273228
关于科研通互助平台的介绍 1210332