DFX: A Low-latency Multi-FPGA Appliance for Accelerating Transformer-based Text Generation

计算机科学 现场可编程门阵列 自动汇总 代码生成 设计空间探索 延迟(音频) 加速 变压器 瓶颈 并行计算 计算机硬件 计算机体系结构 嵌入式系统 人工智能 操作系统 物理 电压 电信 量子力学 钥匙(锁)
作者
Seongmin Hong,Seungjae Moon,Junsoo Kim,Sungjae Lee,Minsub Kim,Dongsoo Lee,Joo-Young Kim
标识
DOI:10.1109/micro56248.2022.00051
摘要

Transformer is a deep learning language model widely used for natural language processing (NLP) services in datacenters. Among transformer models, Generative Pretrained Transformer (GPT) has achieved remarkable performance in text generation, or natural language generation (NLG), which needs the processing of a large input context in the summarization stage, followed by the generation stage that produces a single word at a time. The conventional platforms such as GPU are specialized for the parallel processing of large inputs in the summarization stage, but their performance significantly degrades in the generation stage due to its sequential characteristic. Therefore, an efficient hardware platform is required to address the high latency caused by the sequential characteristic of text generation. In this paper, we present DFX, a multi-FPGA acceleration appliance that executes GPT-2 model inference end-to-end with low latency and high throughput in both summarization and generation stages. DFX uses model parallelism and optimized dataflow that is model-and-hardware-aware for fast simultaneous workload execution among devices. Its compute cores operate on custom instructions and provide GPT-2 operations end-to-end. We implement the proposed hardware architecture on four Xilinx Alveo U280 FPGAs and utilize all of the channels of the high bandwidth memory (HBM) and the maximum number of compute resources for high hardware efficiency. DFX achieves 5.58$\times$ speedup and 3.99$\times$ energy efficiency over four NVIDIA V100 GPUs on the modern GPT-2 model. DFX is also 8.21$\times$ more cost-effective than the GPU appliance, suggesting that it is a promising solution for text generation workloads in cloud datacenters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tail发布了新的文献求助20
刚刚
黄凯完成签到,获得积分10
刚刚
33333完成签到,获得积分20
2秒前
周周发布了新的文献求助10
2秒前
踏实伟帮发布了新的文献求助10
2秒前
情怀应助洵音采纳,获得30
2秒前
Akim应助zuoyou采纳,获得10
2秒前
2秒前
3秒前
丘比特应助体贴的小天鹅采纳,获得10
4秒前
Liuying2809发布了新的文献求助10
4秒前
gejinxin给gejinxin的求助进行了留言
5秒前
5秒前
彭于晏应助美满的红酒采纳,获得10
5秒前
彭于晏应助毛健采纳,获得10
5秒前
善学以致用应助JunHan采纳,获得10
6秒前
跳跃发布了新的文献求助10
6秒前
6秒前
黄凯发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
10秒前
Shan发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
12秒前
充电宝应助zzzz采纳,获得10
12秒前
13秒前
bunny发布了新的文献求助10
13秒前
16秒前
17秒前
JunHan发布了新的文献求助10
17秒前
shlin完成签到,获得积分10
18秒前
18秒前
zz应助摸鱼大王采纳,获得10
19秒前
猪猪hero应助摸鱼大王采纳,获得10
19秒前
wanci应助hh采纳,获得10
19秒前
Owen应助周周采纳,获得10
20秒前
xy820完成签到,获得积分20
21秒前
Shan完成签到,获得积分10
22秒前
天天学习完成签到,获得积分10
23秒前
Zer完成签到,获得积分0
23秒前
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742790
求助须知:如何正确求助?哪些是违规求助? 5410347
关于积分的说明 15345735
捐赠科研通 4883864
什么是DOI,文献DOI怎么找? 2625403
邀请新用户注册赠送积分活动 1574207
关于科研通互助平台的介绍 1531165