DFX: A Low-latency Multi-FPGA Appliance for Accelerating Transformer-based Text Generation

计算机科学 现场可编程门阵列 自动汇总 代码生成 设计空间探索 延迟(音频) 加速 变压器 瓶颈 并行计算 计算机硬件 计算机体系结构 嵌入式系统 人工智能 操作系统 物理 电压 电信 量子力学 钥匙(锁)
作者
Seongmin Hong,Seungjae Moon,Junsoo Kim,Sungjae Lee,Minsub Kim,Dongsoo Lee,Joo-Young Kim
标识
DOI:10.1109/micro56248.2022.00051
摘要

Transformer is a deep learning language model widely used for natural language processing (NLP) services in datacenters. Among transformer models, Generative Pretrained Transformer (GPT) has achieved remarkable performance in text generation, or natural language generation (NLG), which needs the processing of a large input context in the summarization stage, followed by the generation stage that produces a single word at a time. The conventional platforms such as GPU are specialized for the parallel processing of large inputs in the summarization stage, but their performance significantly degrades in the generation stage due to its sequential characteristic. Therefore, an efficient hardware platform is required to address the high latency caused by the sequential characteristic of text generation. In this paper, we present DFX, a multi-FPGA acceleration appliance that executes GPT-2 model inference end-to-end with low latency and high throughput in both summarization and generation stages. DFX uses model parallelism and optimized dataflow that is model-and-hardware-aware for fast simultaneous workload execution among devices. Its compute cores operate on custom instructions and provide GPT-2 operations end-to-end. We implement the proposed hardware architecture on four Xilinx Alveo U280 FPGAs and utilize all of the channels of the high bandwidth memory (HBM) and the maximum number of compute resources for high hardware efficiency. DFX achieves 5.58$\times$ speedup and 3.99$\times$ energy efficiency over four NVIDIA V100 GPUs on the modern GPT-2 model. DFX is also 8.21$\times$ more cost-effective than the GPU appliance, suggesting that it is a promising solution for text generation workloads in cloud datacenters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助xy采纳,获得10
刚刚
1秒前
LuciusHe发布了新的文献求助30
1秒前
zyro完成签到,获得积分10
1秒前
众行绘研举报lana_leslie求助涉嫌违规
2秒前
2秒前
hh发布了新的文献求助10
2秒前
漂亮的麦片完成签到 ,获得积分10
2秒前
在水一方应助奋进号采纳,获得10
2秒前
2秒前
3秒前
皮皮怪发布了新的文献求助10
4秒前
宋嬴一发布了新的文献求助10
4秒前
林暮雪发布了新的文献求助10
4秒前
完美世界应助菲常好采纳,获得10
4秒前
卢浩发布了新的文献求助10
4秒前
刘菠萝完成签到 ,获得积分10
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
夏稚发布了新的文献求助10
7秒前
大力惜海发布了新的文献求助10
7秒前
Anthony发布了新的文献求助10
8秒前
oooaini完成签到,获得积分20
8秒前
8秒前
九月鹰飞完成签到,获得积分10
8秒前
8秒前
wuludie应助FENG采纳,获得10
8秒前
9秒前
10秒前
宋嬴一完成签到,获得积分10
10秒前
wanci应助科研人采纳,获得10
10秒前
卢浩完成签到,获得积分10
10秒前
霖槿完成签到,获得积分10
10秒前
王啦啦完成签到 ,获得积分20
10秒前
11秒前
阿七完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645868
求助须知:如何正确求助?哪些是违规求助? 4769933
关于积分的说明 15032529
捐赠科研通 4804556
什么是DOI,文献DOI怎么找? 2569078
邀请新用户注册赠送积分活动 1526182
关于科研通互助平台的介绍 1485721