DFX: A Low-latency Multi-FPGA Appliance for Accelerating Transformer-based Text Generation

计算机科学 现场可编程门阵列 自动汇总 代码生成 设计空间探索 延迟(音频) 加速 变压器 瓶颈 并行计算 计算机硬件 计算机体系结构 嵌入式系统 人工智能 操作系统 物理 电压 电信 量子力学 钥匙(锁)
作者
Seongmin Hong,Seungjae Moon,Junsoo Kim,Sungjae Lee,Minsub Kim,Dongsoo Lee,Joo-Young Kim
标识
DOI:10.1109/micro56248.2022.00051
摘要

Transformer is a deep learning language model widely used for natural language processing (NLP) services in datacenters. Among transformer models, Generative Pretrained Transformer (GPT) has achieved remarkable performance in text generation, or natural language generation (NLG), which needs the processing of a large input context in the summarization stage, followed by the generation stage that produces a single word at a time. The conventional platforms such as GPU are specialized for the parallel processing of large inputs in the summarization stage, but their performance significantly degrades in the generation stage due to its sequential characteristic. Therefore, an efficient hardware platform is required to address the high latency caused by the sequential characteristic of text generation. In this paper, we present DFX, a multi-FPGA acceleration appliance that executes GPT-2 model inference end-to-end with low latency and high throughput in both summarization and generation stages. DFX uses model parallelism and optimized dataflow that is model-and-hardware-aware for fast simultaneous workload execution among devices. Its compute cores operate on custom instructions and provide GPT-2 operations end-to-end. We implement the proposed hardware architecture on four Xilinx Alveo U280 FPGAs and utilize all of the channels of the high bandwidth memory (HBM) and the maximum number of compute resources for high hardware efficiency. DFX achieves 5.58$\times$ speedup and 3.99$\times$ energy efficiency over four NVIDIA V100 GPUs on the modern GPT-2 model. DFX is also 8.21$\times$ more cost-effective than the GPU appliance, suggesting that it is a promising solution for text generation workloads in cloud datacenters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CooL完成签到 ,获得积分10
刚刚
淡定的问兰完成签到,获得积分10
刚刚
Akim应助123采纳,获得10
1秒前
zuijiasunyou完成签到,获得积分10
1秒前
2秒前
mp5完成签到,获得积分10
4秒前
bluesky完成签到,获得积分10
6秒前
苹果完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
exquisite完成签到,获得积分10
9秒前
默存完成签到,获得积分10
9秒前
Preseverance完成签到,获得积分10
10秒前
jor666完成签到,获得积分10
10秒前
10秒前
young应助huyz采纳,获得10
11秒前
自然之云发布了新的文献求助10
12秒前
酷酷的匪完成签到,获得积分10
12秒前
Wu完成签到 ,获得积分10
13秒前
萤火之森完成签到 ,获得积分20
13秒前
123发布了新的文献求助10
14秒前
15秒前
JQKing完成签到,获得积分10
19秒前
活泼的便当完成签到,获得积分10
19秒前
Boris完成签到 ,获得积分10
20秒前
小遇完成签到,获得积分10
20秒前
jiajia发布了新的文献求助10
20秒前
呵呵贺哈完成签到 ,获得积分10
20秒前
Magali应助Ann采纳,获得30
21秒前
高山流水完成签到,获得积分10
21秒前
22秒前
123完成签到,获得积分10
23秒前
一路硕博完成签到,获得积分10
24秒前
张星星完成签到 ,获得积分10
24秒前
滴答dddd完成签到,获得积分10
24秒前
YYJ完成签到,获得积分10
25秒前
阿飞完成签到,获得积分10
25秒前
Tacamily完成签到,获得积分10
26秒前
犇骉发布了新的文献求助10
27秒前
米多奇完成签到 ,获得积分10
28秒前
FashionBoy应助寂寞的小夏采纳,获得10
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015737
求助须知:如何正确求助?哪些是违规求助? 3555681
关于积分的说明 11318391
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027