亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LipidOA: A Machine-Learning and Prior-Knowledge-Based Tool for Structural Annotation of Glycerophospholipids

化学 注释 甘油磷酯 工作流程 串联质谱法 色谱法 质谱法 预处理器 人工智能 计算机科学 数据库 生物化学 磷脂
作者
Donghui Zhang,Qiyuan Lin,Tian Xia,Jing Zhao,Wenpeng Zhang,Zheng Ouyang,Yu Xia
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (48): 16759-16767 被引量:6
标识
DOI:10.1021/acs.analchem.2c03505
摘要

The Paternò–Büchi (PB) reaction is a carbon–carbon double bond (C═C)-specific derivatization reaction that can be used to pinpoint the location(s) of C═C(s) in unsaturated lipids and quantitate the location of isomers when coupled with tandem mass spectrometry (MS/MS). As the data of PB-MS/MS are increasingly generated, the establishment of a corresponding data analysis tool is highly needed. Herein, LipidOA, a machine-learning and prior-knowledge-based data analysis tool, is developed to analyze PB-MS/MS data generated by liquid chromatography–mass spectrometry workflows. LipidOA consists of four key functional modules to realize an annotation of glycerophospholipid (GPL) structures at the fatty acyl-specific C═C location level. These include (1) data preprocessing, (2) picking C═C diagnostic ions, (3) de novo annotation, and (4) result ranking. Importantly, in the result-ranking module, the reliability of structural annotation is sorted via the use of a machine learning classifier and comparison to the total fatty acid database generated from the same sample. LipidOA is trained and validated by four PB-MS/MS data sets acquired using different PB reagents on mass spectrometers of different resolutions and of different biological samples. Overall, LipidOA provides high precision (higher than 0.9) and a wide coverage for structural annotations of GPLs. These results demonstrate that LipidOA can be used as a robust and flexible tool for annotating PB-MS/MS data collected under different experimental conditions using different lipidomic workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NPC驳回了李健应助
5秒前
归尘应助科研通管家采纳,获得30
8秒前
9秒前
吃饱饱关注了科研通微信公众号
30秒前
53秒前
木子给木子的求助进行了留言
1分钟前
1分钟前
NPC发布了新的文献求助50
1分钟前
学术小白完成签到,获得积分10
1分钟前
jasonjiang完成签到 ,获得积分10
2分钟前
2分钟前
勤恳水风发布了新的文献求助10
2分钟前
2分钟前
zzyh307完成签到 ,获得积分0
3分钟前
今后应助砂砾采纳,获得10
3分钟前
小耳朵完成签到,获得积分10
3分钟前
Jj发布了新的文献求助10
3分钟前
3分钟前
砂砾发布了新的文献求助10
4分钟前
嗯哼应助科研通管家采纳,获得20
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
香蕉觅云应助xll采纳,获得10
4分钟前
4分钟前
4分钟前
00发布了新的文献求助10
4分钟前
科研通AI2S应助wook采纳,获得10
4分钟前
00完成签到,获得积分20
4分钟前
4分钟前
xll发布了新的文献求助10
4分钟前
wook完成签到,获得积分10
4分钟前
xll完成签到,获得积分10
4分钟前
5分钟前
Who发布了新的文献求助10
5分钟前
洛洛大方应助Who采纳,获得10
5分钟前
5分钟前
5分钟前
热情依白应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
iii完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307378
求助须知:如何正确求助?哪些是违规求助? 2941022
关于积分的说明 8500196
捐赠科研通 2615407
什么是DOI,文献DOI怎么找? 1428836
科研通“疑难数据库(出版商)”最低求助积分说明 663595
邀请新用户注册赠送积分活动 648443