Prediction of Adsorptive Activities of MOFs for Pollutants in Aqueous Phase Based on Machine Learning

污染物 吸附 范德瓦尔斯力 金属有机骨架 水溶液 相(物质) 化学 材料科学 计算机科学 分子 物理化学 有机化学
作者
Jiahao Li,Jiawei Wang,Hongxin Mu,Haidong Hu,Jinfeng Wang,Hongqiang Ren,Bing Wu
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:3 (9): 1258-1266 被引量:5
标识
DOI:10.1021/acsestengg.3c00086
摘要

Metal–organic frameworks (MOFs) have gained significant attention in the field of pollutant removal due to their rich pore structures and large specific surface areas. As the number of MOF structures continues to increase, machine learning methods have become a powerful tool for prediction of adsorptive activities of MOFs for pollutants. In this study, 16 models were constructed using published adsorption data, which included 28 MOFs and 30 pollutants, resulting in a dataset of 836 data points. The XGBoost model was determined to be the most effective model, achieving an average R2 of 0.953 during the 5-fold cross-validation. The model's performance was influenced by a combination of MOF features, pollutant features, and adsorption conditions. Key parameters for the XGBoost model's performance included the pollutant concentration, pH, solid–liquid ratio, and temperature. Different types of MOFs, including Zr-MOFs, Cr-MOFs, Al-MOFs, and Fe-MOFs, were observed to display distinct adsorption mechanisms through the machine learning model. These mechanisms included electrostatic interactions, π–π interactions, hydrogen bonding, and van der Waals force. The model's predictions regarding the optimal MOFs and adsorption conditions for the 30 pollutants were partially validated through experimental data, demonstrating the feasibility of the model's predictions. This study provides technical and theoretical support for the prediction and selection of optimal MOFs for pollutant removal in the aqueous phase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
caixia发布了新的文献求助10
1秒前
csr发布了新的文献求助10
2秒前
Xingkun_li完成签到,获得积分10
2秒前
5秒前
5秒前
稳重采枫完成签到,获得积分20
7秒前
王妍妍发布了新的文献求助10
7秒前
科研通AI5应助DK采纳,获得10
8秒前
落后寒凡完成签到,获得积分10
8秒前
希望天下0贩的0应助100采纳,获得10
8秒前
星辰大海应助csr采纳,获得30
8秒前
10秒前
结实抽屉完成签到,获得积分10
10秒前
ghtsmile发布了新的文献求助10
11秒前
欧皇发布了新的文献求助30
12秒前
青木蓝发布了新的文献求助10
13秒前
你好CDY发布了新的文献求助10
13秒前
13秒前
caixia完成签到,获得积分20
13秒前
山是山三十三完成签到 ,获得积分10
15秒前
16秒前
香蕉觅云应助xiao采纳,获得10
17秒前
haohao342发布了新的文献求助20
17秒前
18秒前
大方芾发布了新的文献求助10
20秒前
21秒前
21秒前
香蕉觅云应助PABBY采纳,获得10
21秒前
田様应助顺利鱼采纳,获得10
22秒前
晚风完成签到,获得积分10
23秒前
haohao342完成签到,获得积分10
23秒前
李健的小迷弟应助青木蓝采纳,获得10
26秒前
26秒前
26秒前
明天就毕业完成签到,获得积分10
27秒前
27秒前
忆之完成签到,获得积分10
27秒前
科目三应助刘某采纳,获得10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769376
求助须知:如何正确求助?哪些是违规求助? 3314591
关于积分的说明 10172117
捐赠科研通 3029740
什么是DOI,文献DOI怎么找? 1662441
邀请新用户注册赠送积分活动 794966
科研通“疑难数据库(出版商)”最低求助积分说明 756475