亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Adsorptive Activities of MOFs for Pollutants in Aqueous Phase Based on Machine Learning

污染物 吸附 范德瓦尔斯力 金属有机骨架 水溶液 相(物质) 化学 材料科学 计算机科学 分子 物理化学 有机化学
作者
Jiahao Li,Jiawei Wang,Hongxin Mu,Haidong Hu,Jinfeng Wang,Hongqiang Ren,Bing Wu
出处
期刊:ACS ES&T engineering [American Chemical Society]
卷期号:3 (9): 1258-1266 被引量:9
标识
DOI:10.1021/acsestengg.3c00086
摘要

Metal–organic frameworks (MOFs) have gained significant attention in the field of pollutant removal due to their rich pore structures and large specific surface areas. As the number of MOF structures continues to increase, machine learning methods have become a powerful tool for prediction of adsorptive activities of MOFs for pollutants. In this study, 16 models were constructed using published adsorption data, which included 28 MOFs and 30 pollutants, resulting in a dataset of 836 data points. The XGBoost model was determined to be the most effective model, achieving an average R2 of 0.953 during the 5-fold cross-validation. The model's performance was influenced by a combination of MOF features, pollutant features, and adsorption conditions. Key parameters for the XGBoost model's performance included the pollutant concentration, pH, solid–liquid ratio, and temperature. Different types of MOFs, including Zr-MOFs, Cr-MOFs, Al-MOFs, and Fe-MOFs, were observed to display distinct adsorption mechanisms through the machine learning model. These mechanisms included electrostatic interactions, π–π interactions, hydrogen bonding, and van der Waals force. The model's predictions regarding the optimal MOFs and adsorption conditions for the 30 pollutants were partially validated through experimental data, demonstrating the feasibility of the model's predictions. This study provides technical and theoretical support for the prediction and selection of optimal MOFs for pollutant removal in the aqueous phase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故酒应助科研通管家采纳,获得10
23秒前
我是老大应助科研通管家采纳,获得10
23秒前
幸运的姜姜完成签到 ,获得积分10
30秒前
zsmj23完成签到 ,获得积分0
1分钟前
2分钟前
默默善愁发布了新的文献求助10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
故酒应助科研通管家采纳,获得10
2分钟前
bkagyin应助默默善愁采纳,获得10
2分钟前
宅心仁厚完成签到 ,获得积分10
3分钟前
IMP完成签到 ,获得积分10
3分钟前
成就丸子完成签到 ,获得积分10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
领导范儿应助科研通管家采纳,获得10
4分钟前
大模型应助神勇绮琴采纳,获得10
4分钟前
drirshad完成签到,获得积分10
4分钟前
4分钟前
李健应助清脆元冬采纳,获得10
4分钟前
xiaokun发布了新的文献求助10
4分钟前
4分钟前
5分钟前
清脆元冬完成签到,获得积分20
5分钟前
清脆元冬发布了新的文献求助10
5分钟前
我找到月亮了完成签到 ,获得积分10
6分钟前
Tumumu完成签到,获得积分10
6分钟前
GingerF应助科研通管家采纳,获得50
6分钟前
传奇3应助科研通管家采纳,获得30
6分钟前
Swear完成签到 ,获得积分10
6分钟前
7分钟前
561发布了新的文献求助10
7分钟前
561完成签到,获得积分10
7分钟前
科研通AI5应助andrele采纳,获得10
7分钟前
卡琳完成签到 ,获得积分10
8分钟前
ceeray23应助科研通管家采纳,获得10
8分钟前
ceeray23应助科研通管家采纳,获得10
8分钟前
ceeray23应助科研通管家采纳,获得10
8分钟前
8分钟前
神勇绮琴发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5186749
求助须知:如何正确求助?哪些是违规求助? 4371863
关于积分的说明 13612640
捐赠科研通 4224580
什么是DOI,文献DOI怎么找? 2317098
邀请新用户注册赠送积分活动 1315729
关于科研通互助平台的介绍 1265032