Brain Tumor Classification by Methylation Profile

脑瘤 甲基化 DNA甲基化 分类器(UML) 计算机科学 生物信息学 医学 人工智能 病理 计算生物学 生物 基因 遗传学 基因表达
作者
Jin Woo Park,Kwanghoon Lee,Eric Eunshik Kim,Seong‐Ik Kim,Sung‐Hye Park
出处
期刊:Journal of Korean Medical Science [Korean Academy of Medical Sciences]
卷期号:38 (43) 被引量:2
标识
DOI:10.3346/jkms.2023.38.e356
摘要

The goal of the methylation classifier in brain tumor classification is to accurately classify tumors based on their methylation profiles. Accurate brain tumor diagnosis is the first step for healthcare professionals to predict tumor prognosis and establish personalized treatment plans for patients. The methylation classifier can be used to perform classification on tumor samples with diagnostic difficulties due to ambiguous histology or mismatch between histopathology and molecular signatures, i.e., not otherwise specified (NOS) cases or not elsewhere classified (NEC) cases, aiding in pathological decision-making. Here, the authors elucidate upon the application of a methylation classifier as a tool to mitigate the inherent complexities associated with the pathological evaluation of brain tumors, even when pathologists are experts in histopathological diagnosis and have access to enough molecular genetic information. Also, it should be emphasized that methylome cannot classify all types of brain tumors, and it often produces erroneous matches even with high matching scores, so, excessive trust is prohibited. The primary issue is the considerable difficulty in obtaining reference data regarding the methylation profile of each type of brain tumor. This challenge is further amplified when dealing with recently identified novel types or subtypes of brain tumors, as such data are not readily accessible through open databases or authors of publications. An additional obstacle arises from the fact that methylation classifiers are primarily research-based, leading to the unavailability of charging patients. It is important to note that the application of methylation classifiers may require specialized laboratory techniques and expertise in DNA methylation analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
收醉人完成签到,获得积分10
刚刚
欣喜代秋完成签到,获得积分10
1秒前
尚好完成签到 ,获得积分10
1秒前
lylyzhl完成签到,获得积分10
1秒前
2秒前
独特谷丝发布了新的文献求助10
2秒前
2秒前
xu发布了新的文献求助10
2秒前
NIUBEN发布了新的文献求助10
2秒前
开放的白晴应助panpanh采纳,获得10
3秒前
缓慢思枫完成签到,获得积分10
3秒前
科研通AI5应助杨杨采纳,获得10
3秒前
yesir完成签到,获得积分10
3秒前
西叶完成签到 ,获得积分10
3秒前
mi完成签到 ,获得积分10
4秒前
从容的天空完成签到,获得积分10
5秒前
5秒前
ANAN发布了新的文献求助10
5秒前
暴躁四叔应助lll采纳,获得10
5秒前
偶然的风41177完成签到,获得积分10
6秒前
Catalina_S应助xwl采纳,获得20
6秒前
6秒前
7秒前
aurora完成签到,获得积分20
7秒前
花园荆棘完成签到,获得积分10
7秒前
Hjj完成签到,获得积分10
8秒前
8秒前
在水一方应助奮斗采纳,获得10
8秒前
22驳回了李健应助
9秒前
1230发布了新的文献求助10
9秒前
9秒前
隐形曼青应助九个烧卖采纳,获得10
10秒前
酷酷叫兽完成签到,获得积分10
10秒前
小巫发布了新的文献求助10
11秒前
hubo完成签到,获得积分10
11秒前
幽默白竹发布了新的文献求助10
11秒前
qogir发布了新的文献求助10
12秒前
longlong完成签到 ,获得积分10
12秒前
windmill完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
Interest Rate Modeling. Volume 1: Foundations and Vanilla Models 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539491
求助须知:如何正确求助?哪些是违规求助? 3117036
关于积分的说明 9328937
捐赠科研通 2814931
什么是DOI,文献DOI怎么找? 1547311
邀请新用户注册赠送积分活动 720865
科研通“疑难数据库(出版商)”最低求助积分说明 712333