A first-principles study of the electronic structure, surface stability, and band alignment of niobium pentoxide

五氧化二铌 带隙 半导体 材料科学 电子结构 半金属 五氧化二钽 工作职能 过渡金属 直接和间接带隙 电子能带结构 化学物理 纳米技术 催化作用 光电子学 金属 化学 凝聚态物理 计算化学 薄膜 冶金 物理 生物化学
作者
Camilo Valencia‐Balvín,Santiago Perez-Walton,Joaquín Peralta,J. M. Osorio-Guillén
出处
期刊:Computational Materials Science [Elsevier]
卷期号:231: 112536-112536 被引量:1
标识
DOI:10.1016/j.commatsci.2023.112536
摘要

Currently, there is a growing development to find new materials to achieve clean and sustainable energy production, and one of the key processes in this effort is to replace expensive noble element catalysts with less costly transition metal oxides. Niobium pentoxide (Nb2O5) is a wide-gap semiconductor with good catalytic properties which makes it an essential material in this kind of technological applications, however, there are no theoretical studies on the surface physical properties for the different phases of this compound. In this work, we have performed first-principles calculations to study the bulk electronic properties and the low-index non-polar surfaces of the B and R crystallographic phases of Nb2O5. We have used a semi-local exchange–correlation functional (PBEsol) along with the GoWo approximation to calculate their gap and band alignments with respect to the vacuum. It has been found that these phases are indirect wide-gap semiconductors, the calculated gaps for B (R) are EgPBEsol=2.6eV (2.1 eV) and EgGoWo=4.2eV (3.8 eV). On the other hand, it is established that the most stable surfaces are (010) and (001) for B and R, respectively, and their highest conduction band edges are along the (1̄01) and (100) terminations, both being above the CO2/CH2O2 reduction potential at pH = 7. Our results present clues into utilizing these Nb2O5 phases on technological applications such as photocatalytic uses on water splitting and carbon dioxide reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CC完成签到,获得积分10
刚刚
wwuu发布了新的文献求助10
1秒前
shenyanlei发布了新的文献求助10
1秒前
一汁蟹发布了新的文献求助20
2秒前
大个应助绿麦盲区采纳,获得10
2秒前
雨齐完成签到,获得积分10
2秒前
茶艺如何发布了新的文献求助10
2秒前
2秒前
kk完成签到,获得积分10
3秒前
3秒前
123发布了新的文献求助10
3秒前
yyyy完成签到,获得积分10
4秒前
好好学习天天向上完成签到,获得积分10
4秒前
欣慰友梅发布了新的文献求助10
4秒前
4秒前
5秒前
Akim应助易伊澤采纳,获得10
5秒前
格局太小完成签到,获得积分10
5秒前
5秒前
尔云完成签到,获得积分10
6秒前
传奇3应助GGZ采纳,获得10
6秒前
我瞎蒙发布了新的文献求助10
6秒前
llllllll完成签到,获得积分10
7秒前
香蕉觅云应助shenyanlei采纳,获得10
7秒前
kdkfjaljk完成签到 ,获得积分10
7秒前
7秒前
CipherSage应助芒果采纳,获得10
7秒前
7秒前
8秒前
nini完成签到,获得积分10
8秒前
8秒前
8秒前
FloppyWow发布了新的文献求助10
9秒前
9秒前
9秒前
白白发布了新的文献求助10
10秒前
隐形曼青应助小猴采纳,获得10
10秒前
灵巧荆发布了新的文献求助10
10秒前
11秒前
kdkfjaljk关注了科研通微信公众号
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762