亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Ensemble of Long Short-Term Memory Networks with an Attention Mechanism for Upper Limb Electromyography Signal Classification

计算机科学 预处理器 分类器(UML) 人工智能 肌电图 模式识别(心理学) 人工神经网络 信号(编程语言) 机器学习 期限(时间) 机制(生物学) 物理医学与康复 医学 哲学 物理 认识论 量子力学 程序设计语言
作者
Naif D. Alotaibi,Hadi Jahanshahi,Qijia Yao,Jun Mou,Stelios Bekiros
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:11 (18): 4004-4004 被引量:1
标识
DOI:10.3390/math11184004
摘要

Advancing cutting-edge techniques to accurately classify electromyography (EMG) signals are of paramount importance given their extensive implications and uses. While recent studies in the literature present promising findings, a significant potential still exists for substantial enhancement. Motivated by this need, our current paper introduces a novel ensemble neural network approach for time series classification, specifically focusing on the classification of upper limb EMG signals. Our proposed technique integrates long short-term memory networks (LSTM) and attention mechanisms, leveraging their capabilities to achieve accurate classification. We provide a thorough explanation of the architecture and methodology, considering the unique characteristics and challenges posed by EMG signals. Furthermore, we outline the preprocessing steps employed to transform raw EMG signals into a suitable format for classification. To evaluate the effectiveness of our proposed technique, we compare its performance with a baseline LSTM classifier. The obtained numerical results demonstrate the superiority of our method. Remarkably, the method we propose attains an average accuracy of 91.5%, with all motion classifications surpassing the 90% threshold.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
梦想家完成签到,获得积分10
48秒前
50秒前
story发布了新的文献求助10
55秒前
科研通AI2S应助story采纳,获得10
1分钟前
1分钟前
鉴定为学计算学的完成签到,获得积分10
1分钟前
熊啊发布了新的文献求助10
1分钟前
Kevin完成签到,获得积分10
2分钟前
sci2025opt完成签到 ,获得积分10
2分钟前
2分钟前
李健应助鸡蛋黄采纳,获得10
2分钟前
2分钟前
wujiwuhui完成签到 ,获得积分10
3分钟前
3分钟前
鸡蛋黄发布了新的文献求助10
3分钟前
完美世界应助眼睛大智宸采纳,获得10
3分钟前
市政的艺术家完成签到,获得积分10
3分钟前
Virtual应助科研通管家采纳,获得20
3分钟前
JamesPei应助市政的艺术家采纳,获得20
3分钟前
lod完成签到,获得积分10
3分钟前
4分钟前
淡淡醉波wuliao完成签到 ,获得积分0
4分钟前
可可完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
熊啊发布了新的文献求助10
5分钟前
lj发布了新的文献求助10
5分钟前
Ava应助krajicek采纳,获得10
5分钟前
NexusExplorer应助熊啊采纳,获得10
5分钟前
lj完成签到,获得积分10
5分钟前
5分钟前
krajicek发布了新的文献求助10
5分钟前
排骨大王完成签到,获得积分10
5分钟前
5分钟前
5分钟前
灵巧灵松发布了新的文献求助10
6分钟前
6分钟前
Jiayi完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4568949
求助须知:如何正确求助?哪些是违规求助? 3991291
关于积分的说明 12355635
捐赠科研通 3663460
什么是DOI,文献DOI怎么找? 2018921
邀请新用户注册赠送积分活动 1053332
科研通“疑难数据库(出版商)”最低求助积分说明 940877