Multi-cohort validation study of a four-gene signature for risk stratification and treatment response prediction in hepatocellular carcinoma

肝细胞癌 基因签名 肿瘤科 医学 转录组 内科学 队列 基因 生物信息学 基因表达 计算生物学 癌症研究 生物 遗传学
作者
Cuicui Liu,Zhijun Xiao,Shenghong Wu,Zhen Yang,Guowen Ji,Jingjing Duan,Ting Zhou,Jinming Cao,Xiufeng Liu,Feng Xu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107694-107694 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107694
摘要

The intricate molecular landscape of hepatocellular carcinoma (HCC) presents a significant challenge to achieving precise risk stratification through clinical genetic testing. At present, there is a paucity of robust gene signatures that could assist clinicians in making clinical decisions for patients with HCC. We obtained gene expression profiles of patients with HCC from 20 independent cohorts available in public databases. A gene signature was developed by employing two machine learning algorithms. In addition to validating the signature with high-throughput data in public cohorts, we external validated the signature in 64 HCC cases by RT-PCR method. We compared genomic, transcriptomic and proteomic features between different subgroups. We also compared our signature to 130 gene signatures that have already been published. We developed a novel four-gene signature, designated as HCC4, that demonstrates significant potential for the prediction of survival outcomes in more than 1300 patients with HCC. The HCC4 also has potential for predicting recurrence and tumor volume doubling time, assessing transcatheter arterial chemoembolization and immunotherapy responses, and non-invasive detection of HCC. The high HCC4 score group shows a higher frequency of mutations in genes TP53, RB1 and TSC1/2, as well as increased activity of cell-cycle, glycolysis and hypoxia signaling pathways, higher cancer stemness score, and lower lipid metabolism activity. In seven HCC cohorts, HCC4 exhibited a higher average C-index in predicting overall survival compared to the 130 signatures previously published. Drug screening indicated that patients with high HCC4 scores were more sensitive to agents targeting AURKA, TUBB, JMJD6 and KIFC1. Our findings demonstrated that HCC4 is a powerful tool for improving risk stratification and for identifying HCC patients who are most likely to benefit from TACE treatment, immunotherapy, and other experimental therapies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研大王发布了新的文献求助10
6秒前
JUN完成签到,获得积分10
6秒前
JL发布了新的文献求助10
6秒前
8秒前
11秒前
Cicci发布了新的文献求助10
12秒前
lzl完成签到,获得积分10
13秒前
开飞机的舒克完成签到,获得积分10
16秒前
ding应助邵佳怡采纳,获得10
17秒前
申霄九云外完成签到,获得积分10
17秒前
17秒前
追寻的衣完成签到,获得积分10
18秒前
yk完成签到,获得积分10
19秒前
20秒前
周防尊关注了科研通微信公众号
20秒前
21秒前
hkh发布了新的文献求助10
21秒前
22秒前
莫茹完成签到 ,获得积分10
23秒前
klasjhndfo发布了新的文献求助10
26秒前
26秒前
dkjg完成签到 ,获得积分10
28秒前
Cicci完成签到,获得积分10
28秒前
科研大王发布了新的文献求助10
28秒前
28秒前
30秒前
元谷雪应助咔嚓采纳,获得10
33秒前
Qiangzai完成签到,获得积分10
34秒前
打打应助科研通管家采纳,获得10
35秒前
丰知然应助科研通管家采纳,获得10
35秒前
砡君应助科研通管家采纳,获得10
35秒前
BareBear应助科研通管家采纳,获得10
36秒前
Akim应助科研通管家采纳,获得10
36秒前
元谷雪应助科研通管家采纳,获得10
36秒前
脑洞疼应助科研通管家采纳,获得10
36秒前
哲别发布了新的文献求助10
36秒前
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557486
求助须知:如何正确求助?哪些是违规求助? 4642542
关于积分的说明 14668440
捐赠科研通 4583969
什么是DOI,文献DOI怎么找? 2514468
邀请新用户注册赠送积分活动 1488818
关于科研通互助平台的介绍 1459446