Multi-cohort validation study of a four-gene signature for risk stratification and treatment response prediction in hepatocellular carcinoma

肝细胞癌 基因签名 肿瘤科 医学 转录组 内科学 队列 基因 生物信息学 基因表达 计算生物学 癌症研究 生物 遗传学
作者
Cuicui Liu,Zhijun Xiao,Shenghong Wu,Zhen Yang,Guowen Ji,Jingjing Duan,Ting Zhou,Jinming Cao,Xiufeng Liu,Feng Xu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107694-107694 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107694
摘要

The intricate molecular landscape of hepatocellular carcinoma (HCC) presents a significant challenge to achieving precise risk stratification through clinical genetic testing. At present, there is a paucity of robust gene signatures that could assist clinicians in making clinical decisions for patients with HCC. We obtained gene expression profiles of patients with HCC from 20 independent cohorts available in public databases. A gene signature was developed by employing two machine learning algorithms. In addition to validating the signature with high-throughput data in public cohorts, we external validated the signature in 64 HCC cases by RT-PCR method. We compared genomic, transcriptomic and proteomic features between different subgroups. We also compared our signature to 130 gene signatures that have already been published. We developed a novel four-gene signature, designated as HCC4, that demonstrates significant potential for the prediction of survival outcomes in more than 1300 patients with HCC. The HCC4 also has potential for predicting recurrence and tumor volume doubling time, assessing transcatheter arterial chemoembolization and immunotherapy responses, and non-invasive detection of HCC. The high HCC4 score group shows a higher frequency of mutations in genes TP53, RB1 and TSC1/2, as well as increased activity of cell-cycle, glycolysis and hypoxia signaling pathways, higher cancer stemness score, and lower lipid metabolism activity. In seven HCC cohorts, HCC4 exhibited a higher average C-index in predicting overall survival compared to the 130 signatures previously published. Drug screening indicated that patients with high HCC4 scores were more sensitive to agents targeting AURKA, TUBB, JMJD6 and KIFC1. Our findings demonstrated that HCC4 is a powerful tool for improving risk stratification and for identifying HCC patients who are most likely to benefit from TACE treatment, immunotherapy, and other experimental therapies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
syx发布了新的文献求助10
刚刚
刚刚
cff完成签到,获得积分10
刚刚
Xuan_Y完成签到,获得积分10
1秒前
情怀应助157295108采纳,获得10
1秒前
物理师z发布了新的文献求助10
1秒前
1秒前
ccc完成签到,获得积分10
1秒前
2秒前
qww完成签到,获得积分10
2秒前
无敌暴龙战神完成签到,获得积分10
3秒前
风清扬发布了新的文献求助10
3秒前
斯文败类应助邱洪晓采纳,获得10
3秒前
4秒前
1900完成签到,获得积分10
4秒前
涛声依旧发布了新的文献求助10
4秒前
科研式发布了新的文献求助10
5秒前
uu完成签到 ,获得积分10
5秒前
深情安青应助抽纸盒采纳,获得10
5秒前
眼睛大的黑猫完成签到,获得积分10
5秒前
6秒前
wanci应助bing采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
一念初见发布了新的文献求助10
7秒前
水水的橙子完成签到,获得积分10
8秒前
充电宝应助ddddd采纳,获得10
8秒前
8秒前
李盛男完成签到,获得积分10
8秒前
罗玉完成签到,获得积分10
8秒前
qilin发布了新的文献求助10
9秒前
彭于晏应助niko采纳,获得10
9秒前
h41692011完成签到 ,获得积分10
9秒前
9秒前
伟蓓1314发布了新的文献求助10
9秒前
shfgref完成签到,获得积分10
10秒前
PFD000发布了新的文献求助20
10秒前
10秒前
10秒前
风吹麦田应助huhdcid采纳,获得50
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512346
求助须知:如何正确求助?哪些是违规求助? 4606639
关于积分的说明 14500751
捐赠科研通 4542109
什么是DOI,文献DOI怎么找? 2488840
邀请新用户注册赠送积分活动 1470931
关于科研通互助平台的介绍 1443123