Multi-cohort validation study of a four-gene signature for risk stratification and treatment response prediction in hepatocellular carcinoma

肝细胞癌 基因签名 肿瘤科 医学 转录组 内科学 队列 基因 生物信息学 基因表达 计算生物学 癌症研究 生物 遗传学
作者
Cuicui Liu,Zhijun Xiao,Shenghong Wu,Zhen Yang,Guowen Ji,Jingjing Duan,Ting Zhou,Jinming Cao,Xiufeng Liu,Feng Xu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107694-107694 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107694
摘要

The intricate molecular landscape of hepatocellular carcinoma (HCC) presents a significant challenge to achieving precise risk stratification through clinical genetic testing. At present, there is a paucity of robust gene signatures that could assist clinicians in making clinical decisions for patients with HCC. We obtained gene expression profiles of patients with HCC from 20 independent cohorts available in public databases. A gene signature was developed by employing two machine learning algorithms. In addition to validating the signature with high-throughput data in public cohorts, we external validated the signature in 64 HCC cases by RT-PCR method. We compared genomic, transcriptomic and proteomic features between different subgroups. We also compared our signature to 130 gene signatures that have already been published. We developed a novel four-gene signature, designated as HCC4, that demonstrates significant potential for the prediction of survival outcomes in more than 1300 patients with HCC. The HCC4 also has potential for predicting recurrence and tumor volume doubling time, assessing transcatheter arterial chemoembolization and immunotherapy responses, and non-invasive detection of HCC. The high HCC4 score group shows a higher frequency of mutations in genes TP53, RB1 and TSC1/2, as well as increased activity of cell-cycle, glycolysis and hypoxia signaling pathways, higher cancer stemness score, and lower lipid metabolism activity. In seven HCC cohorts, HCC4 exhibited a higher average C-index in predicting overall survival compared to the 130 signatures previously published. Drug screening indicated that patients with high HCC4 scores were more sensitive to agents targeting AURKA, TUBB, JMJD6 and KIFC1. Our findings demonstrated that HCC4 is a powerful tool for improving risk stratification and for identifying HCC patients who are most likely to benefit from TACE treatment, immunotherapy, and other experimental therapies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在路上完成签到 ,获得积分10
刚刚
Simmy完成签到,获得积分10
刚刚
年轻千愁完成签到 ,获得积分10
刚刚
1秒前
冷静山灵发布了新的文献求助10
1秒前
why完成签到,获得积分20
1秒前
阿V完成签到,获得积分10
2秒前
2秒前
2秒前
科研通AI2S应助简单不言采纳,获得10
3秒前
吃颗电池完成签到,获得积分10
3秒前
3秒前
yar应助科研通管家采纳,获得10
3秒前
大饼应助科研通管家采纳,获得10
3秒前
yar应助科研通管家采纳,获得10
3秒前
yar应助科研通管家采纳,获得10
4秒前
shinnosuke应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
田様应助科研通管家采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
4秒前
马金金发布了新的文献求助10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
4秒前
华仔应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
yar应助科研通管家采纳,获得10
4秒前
4秒前
ZQY发布了新的文献求助10
4秒前
小圆子完成签到,获得积分10
4秒前
魁梧的一笑完成签到,获得积分20
4秒前
浮游应助迷人的叫兽采纳,获得10
5秒前
美女完成签到,获得积分10
5秒前
曹先生完成签到,获得积分10
5秒前
fsz发布了新的文献求助10
5秒前
Forever完成签到 ,获得积分10
5秒前
成就的沛菡完成签到 ,获得积分10
5秒前
海藻发布了新的文献求助10
6秒前
科研通AI2S应助michael采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645248
求助须知:如何正确求助?哪些是违规求助? 4768236
关于积分的说明 15027213
捐赠科研通 4803788
什么是DOI,文献DOI怎么找? 2568456
邀请新用户注册赠送积分活动 1525787
关于科研通互助平台的介绍 1485451