Hierarchical optimization control strategy for intelligent fuel cell hybrid electric vehicles platoon in complex operation conditions

控制器(灌溉) 粒子群优化 计算机科学 控制理论(社会学) 弹道 巡航控制 功率(物理) 汽车工程 燃料效率 工程类 控制(管理) 量子力学 生物 天文 机器学习 物理 人工智能 农学
作者
Zhigen Nie,Lanxin Zhu,Jia Yuan,Yufeng Lian,Wei Yang
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:50: 1056-1068 被引量:7
标识
DOI:10.1016/j.ijhydene.2023.10.195
摘要

Encountering complex traffic conditions such as the dynamic interference of preceding and rear vehicles and gradients, a control strategy that simultaneously considers inter-vehicle cooperative control and energy economy is one of the key technologies, that improves traffic efficiency and exploits the energy-saving potential of platoon vehicles. In this paper, a hierarchical optimization control strategy is proposed for the intelligent fuel cell hybrid electric vehicles (FCHEV) platoon in a network-connected environment. The hierarchical control framework consists of upper speed control and lower power distribution. In the upper layer, the improved particle swarm optimization (PSO) algorithm is applied to calculate the global optimal speed trajectory, and then the model predictive control (MPC) is adopted for global speed trajectory tracking and self-adaptation, which can ensure the ego vehicle tracks the pre-calculated speed trajectory, and can re-plan the vehicle speed under the condition of safety priority when sudden disturbances occur in the foreground. The lower layer utilizes Q-learning (QL) to achieve power distribution between hybrid power sources, reducing the number of fuel cell starts and stops, slowing battery degradation and improving vehicle economy. Simulation results based on complex road conditions show that the proposed controller has good energy economy and tracking performance. Under the condition of the slope, the total platoon cost of the proposed strategy is reduced by 3.99% compared with the constant speed cruise strategy, and under the interference condition, the total platoon consumption cost of the proposed strategy decreased by 6.79% compared with adaptive cruise control (ACC).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿巴阿巴完成签到,获得积分10
1秒前
能干世界发布了新的文献求助10
3秒前
杨文献发布了新的文献求助10
5秒前
庸人自扰完成签到,获得积分10
7秒前
口腔飞飞完成签到 ,获得积分10
9秒前
科研小白完成签到 ,获得积分10
9秒前
迪迪猪完成签到,获得积分10
10秒前
艺阳完成签到,获得积分10
12秒前
zyx关注了科研通微信公众号
16秒前
阳光的傲儿完成签到 ,获得积分20
17秒前
风评完成签到,获得积分10
18秒前
橘子sungua完成签到,获得积分10
20秒前
豆⑧完成签到,获得积分10
22秒前
shelemi发布了新的文献求助10
22秒前
猪猪hero应助散木采纳,获得10
23秒前
26秒前
朴素小霜发布了新的文献求助10
27秒前
27秒前
科研通AI2S应助seven采纳,获得10
28秒前
科研通AI2S应助seven采纳,获得10
29秒前
科研通AI2S应助seven采纳,获得10
29秒前
科研通AI2S应助seven采纳,获得10
29秒前
科研通AI2S应助seven采纳,获得10
29秒前
和平使命应助seven采纳,获得10
29秒前
30秒前
lanceliu2022发布了新的文献求助10
30秒前
30秒前
30秒前
希望天下0贩的0应助Lx采纳,获得10
33秒前
shelemi发布了新的文献求助10
35秒前
搞怪莫茗发布了新的文献求助10
36秒前
活力的咖啡完成签到,获得积分10
36秒前
Ava应助淡然的夜柳采纳,获得10
37秒前
Zhang完成签到,获得积分10
37秒前
38秒前
43秒前
栀盎完成签到,获得积分10
43秒前
44秒前
45秒前
卷心菜完成签到,获得积分10
46秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3383690
求助须知:如何正确求助?哪些是违规求助? 2997862
关于积分的说明 8776756
捐赠科研通 2683450
什么是DOI,文献DOI怎么找? 1469711
科研通“疑难数据库(出版商)”最低求助积分说明 679488
邀请新用户注册赠送积分活动 671775