AMPA受体
门控
蛋白质亚单位
细胞生物学
谷氨酸受体
沉默突触
突触
神经传递
生物
神经科学
化学
谷氨酸的
长时程增强
受体
生物物理学
生物化学
基因
作者
Danyang Zhang,Josip Ivica,James Krieger,Hinze Ho,Keitaro Yamashita,Imogen Stockwell,Rozbeh Baradaran,Ondřej Cais,Ingo H. Greger
出处
期刊:Nature
[Springer Nature]
日期:2023-09-13
卷期号:621 (7980): 877-882
被引量:25
标识
DOI:10.1038/s41586-023-06528-0
摘要
Abstract AMPA glutamate receptors (AMPARs), the primary mediators of excitatory neurotransmission in the brain, are either GluA2 subunit-containing and thus Ca 2+ -impermeable, or GluA2-lacking and Ca 2+ -permeable 1 . Despite their prominent expression throughout interneurons and glia, their role in long-term potentiation and their involvement in a range of neuropathologies 2 , structural information for GluA2-lacking receptors is currently absent. Here we determine and characterize cryo-electron microscopy structures of the GluA1 homotetramer, fully occupied with TARPγ3 auxiliary subunits (GluA1/γ3). The gating core of both resting and open-state GluA1/γ3 closely resembles GluA2-containing receptors. However, the sequence-diverse N-terminal domains (NTDs) give rise to a highly mobile assembly, enabling domain swapping and subunit re-alignments in the ligand-binding domain tier that are pronounced in desensitized states. These transitions underlie the unique kinetic properties of GluA1. A GluA2 mutant (F231A) increasing NTD dynamics phenocopies this behaviour, and exhibits reduced synaptic responses, reflecting the anchoring function of the AMPAR NTD at the synapse. Together, this work underscores how the subunit-diverse NTDs determine subunit arrangement, gating properties and ultimately synaptic signalling efficiency among AMPAR subtypes.
科研通智能强力驱动
Strongly Powered by AbleSci AI