TranSiam: Aggregating multi-modal visual features with locality for medical image segmentation

计算机科学 情态动词 保险丝(电气) 人工智能 模式识别(心理学) 分割 地点 块(置换群论) 编码器 卷积神经网络 图层(电子) 数学 哲学 工程类 电气工程 有机化学 化学 高分子化学 操作系统 语言学 几何学
作者
Xuejian Li,Shiqiang Ma,Junhai Xu,Jijun Tang,Shengfeng He,Fei Guo
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121574-121574 被引量:20
标识
DOI:10.1016/j.eswa.2023.121574
摘要

Automatic segmentation of medical images plays an important role in the diagnosis of diseases. On single-modal data, convolutional neural networks have demonstrated satisfactory performance. However, multi-modal data encompasses a greater amount of information rather than single-modal data. Multi-modal data can be effectively used to improve the segmentation accuracy of regions of interest by analyzing both spatial and temporal information. In this study, we propose a dual-path segmentation model for multi-modal medical images, named TranSiam. Taking into account that there is a significant diversity between the different modalities, TranSiam employs two parallel CNNs to extract the features which are specific to each of the modalities. In our method, two parallel CNNs extract detailed and local information in the low-level layer, and the Transformer layer extracts global information in the high-level layer. Finally, we fuse the features of different modalities via a locality-aware aggregation block (LAA block) to establish the association between different modal features. The LAA block is used to locate the region of interest and suppress the influence of invalid regions on multi-modal feature fusion. TranSiam uses LAA blocks at each layer of the encoder in order to fully fuse multi-modal information at different scales. Extensive experiments on several multi-modal datasets have shown that TranSiam achieves satisfying results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Stella应助藏识采纳,获得200
刚刚
傅。发布了新的文献求助30
1秒前
1秒前
1秒前
金小贝完成签到,获得积分10
2秒前
charon完成签到 ,获得积分10
2秒前
cauwindwill发布了新的文献求助10
2秒前
xue完成签到,获得积分20
3秒前
大大大完成签到,获得积分10
3秒前
3秒前
哲999完成签到,获得积分10
3秒前
3秒前
慕青应助酷炫翠柏采纳,获得10
4秒前
小狐君发布了新的文献求助10
4秒前
海棠先雪发布了新的文献求助10
4秒前
Hello应助小熊猫采纳,获得10
5秒前
6秒前
Dr Niu发布了新的文献求助10
6秒前
7秒前
hainan完成签到,获得积分10
7秒前
苏苏发布了新的文献求助20
7秒前
月亮发布了新的文献求助10
7秒前
小瑞儿完成签到 ,获得积分10
7秒前
颜颜发布了新的文献求助10
7秒前
蜡笔小新的小白完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
xue发布了新的文献求助10
10秒前
hzwhz发布了新的文献求助10
10秒前
宋宋发布了新的文献求助10
10秒前
董晴发布了新的文献求助10
11秒前
英俊的铭应助叶子采纳,获得30
11秒前
anthony完成签到,获得积分10
13秒前
今后应助月亮采纳,获得10
14秒前
14秒前
xstar完成签到 ,获得积分10
14秒前
李健应助xue采纳,获得10
14秒前
大梦想家完成签到,获得积分10
14秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581313
求助须知:如何正确求助?哪些是违规求助? 4665766
关于积分的说明 14758178
捐赠科研通 4607617
什么是DOI,文献DOI怎么找? 2528305
邀请新用户注册赠送积分活动 1497589
关于科研通互助平台的介绍 1466474