Sparse and Hierarchical Transformer for Survival Analysis on Whole Slide Images

过度拟合 变压器 计算机科学 人工智能 模式识别(心理学) 分层数据库模型 机器学习 数据挖掘 人工神经网络 工程类 电压 电气工程
作者
Rui Yan,Zhilong Lv,Zhidong Yang,Senlin Lin,Chun-Hou Zheng,Fa Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 7-18 被引量:1
标识
DOI:10.1109/jbhi.2023.3307584
摘要

The Transformer-based methods provide a good opportunity for modeling the global context of gigapixel whole slide image (WSI), however, there are still two main problems in applying Transformer to WSI-based survival analysis task. First, the training data for survival analysis is limited, which makes the model prone to overfitting. This problem is even worse for Transformer-based models which require large-scale data to train. Second, WSI is of extremely high resolution (up to 150,000 x 150,000 pixels) and is typically organized as a multi-resolution pyramid. Vanilla Transformer cannot model the hierarchical structure of WSI (such as patch cluster-level relationships), which makes it incapable of learning hierarchical WSI representation. To address these problems, in this paper, we propose a novel Sparse and Hierarchical Transformer (SH-Transformer) for survival analysis. Specifically, we introduce sparse self-attention to alleviate the overfitting problem, and propose a hierarchical Transformer structure to learn the hierarchical WSI representation. Experimental results based on three WSI datasets show that the proposed framework outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助毛先生采纳,获得10
刚刚
坦率尔蓝完成签到,获得积分20
1秒前
1秒前
畅快的觅风完成签到,获得积分10
1秒前
爆米花应助郑郑采纳,获得10
2秒前
3秒前
干饭虫应助T102892采纳,获得10
3秒前
量子星尘发布了新的文献求助30
4秒前
Orange应助麻瓜采纳,获得10
4秒前
Joyce发布了新的文献求助10
5秒前
guoguo1119发布了新的文献求助10
5秒前
喵呜完成签到,获得积分10
6秒前
北北完成签到,获得积分10
6秒前
gk完成签到,获得积分20
7秒前
7秒前
8秒前
核桃应助slowfloat采纳,获得20
8秒前
JamesPei应助B站萧亚轩采纳,获得10
9秒前
搞怪雁风完成签到,获得积分10
9秒前
刘茗元发布了新的文献求助20
9秒前
9秒前
9秒前
9秒前
10秒前
上官若男应助wzc采纳,获得10
11秒前
arzw完成签到,获得积分10
11秒前
传统的妖妖完成签到,获得积分20
13秒前
脑洞疼应助why采纳,获得10
13秒前
搞怪雁风发布了新的文献求助10
14秒前
江湖护卫舰应助zzyluckyzoe采纳,获得10
14秒前
一叶知秋应助杜晓雯采纳,获得10
14秒前
科研通AI5应助凌兰采纳,获得30
15秒前
15秒前
15秒前
Akim应助潘小蓝采纳,获得10
15秒前
未晞发布了新的文献求助10
16秒前
杨家欢完成签到 ,获得积分10
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940989
求助须知:如何正确求助?哪些是违规求助? 4207022
关于积分的说明 13076328
捐赠科研通 3985793
什么是DOI,文献DOI怎么找? 2182277
邀请新用户注册赠送积分活动 1197870
关于科研通互助平台的介绍 1110197