已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TSMPN-PSI: high-performance polarization scattering imaging based on three-stage multi-pipeline networks

极化(电化学) 计算机科学 散射 人工智能 光学 计算机视觉 模式识别(心理学) 物理 化学 物理化学
作者
Xueqiang Fan,Bing Lin,Kai Guo,Bingyi Liu,Zhongyi Guo
出处
期刊:Optics Express [The Optical Society]
卷期号:31 (23): 38097-38097 被引量:11
标识
DOI:10.1364/oe.501269
摘要

Polarization imaging, which provides multidimensional information beyond traditional intensity imaging, has prominent advantages for complex imaging tasks, particularly in scattering environments. By introducing deep learning (DL) into computational imaging and sensing, polarization scattering imaging (PSI) has obtained impressive progresses, however, it remains a challenging but long-standing puzzle due to the fact that scattering medium can result in significant degradation of the object information. Herein, we explore the relationship between multiple polarization feature learning strategy and the PSI performances, and propose a new multi-polarization driven multi-pipeline (MPDMP) framework to extract rich hierarchical representations from multiple independent polarization feature maps. Based on the MPDMP framework, we introduce a well-designed three-stage multi-pipeline networks (TSMPN) architecture to achieve the PSI, named TSMPN-PSI. The proposed TSMPN-PSI comprises three stages: pre-processing polarization image for de-speckling, multiple polarization feature learning, and target information reconstruction. Furthermore, we establish a real-world polarization scattering imaging system under active light illumination to acquire a dataset of real-life scenarios for training the model. Both qualitative and quantitative experimental results show that the proposed TSMPN-PSI achieves higher generalization performance than other methods on three testing data sets refer to imaging distances, target structures, and target materials and their background materials. We believe that our work presents a new framework for the PSI and paves the way to its pragmatic applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yffff完成签到,获得积分10
2秒前
2秒前
夏弥2016完成签到,获得积分10
3秒前
lwh104完成签到,获得积分10
4秒前
lingliz完成签到,获得积分10
4秒前
开朗大雁完成签到,获得积分10
4秒前
沉默哈密瓜完成签到 ,获得积分10
5秒前
雨肖发布了新的文献求助10
5秒前
zcg关闭了zcg文献求助
6秒前
寒hep完成签到,获得积分10
7秒前
7秒前
SciGPT应助谷歌采纳,获得10
10秒前
wxl完成签到,获得积分10
11秒前
高大的奇异果完成签到,获得积分10
13秒前
14秒前
17秒前
秋云山月发布了新的文献求助20
19秒前
22秒前
Carl完成签到,获得积分20
24秒前
科研通AI2S应助210013803采纳,获得10
24秒前
sht发布了新的文献求助10
24秒前
采珺应助学术废物3_1415采纳,获得10
25秒前
27秒前
27秒前
清枫发布了新的文献求助10
29秒前
坚强的秋千完成签到 ,获得积分10
29秒前
ccc完成签到 ,获得积分10
31秒前
雪白的听寒完成签到 ,获得积分10
31秒前
aojuan发布了新的文献求助10
32秒前
哎呀完成签到 ,获得积分10
32秒前
32秒前
liyan发布了新的文献求助10
32秒前
33秒前
34秒前
zcg完成签到,获得积分10
34秒前
天天快乐应助andrele采纳,获得10
36秒前
37秒前
Zed发布了新的文献求助10
38秒前
十年发布了新的文献求助10
39秒前
zcg发布了新的文献求助10
39秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3590399
求助须知:如何正确求助?哪些是违规求助? 3158683
关于积分的说明 9521191
捐赠科研通 2861748
什么是DOI,文献DOI怎么找? 1572766
邀请新用户注册赠送积分活动 738110
科研通“疑难数据库(出版商)”最低求助积分说明 722676