Sparse Time–Frequency Analysis of Seismic Data: Sparse Representation to Unrolled Optimization

计算机科学 稀疏逼近 算法 时频分析 阈值 信号重构 稀疏矩阵 人工智能 频域 信号处理 模式识别(心理学) 高斯分布 计算机视觉 数字信号处理 图像(数学) 计算机硬件 滤波器(信号处理) 物理 量子力学
作者
Naihao Liu,Youbo Lei,Rongchang Liu,Yang Yang,Tao Wei,Jinghuai Gao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-10 被引量:25
标识
DOI:10.1109/tgrs.2023.3300578
摘要

Time-frequency analysis (TFA) is widely used to describe local time-frequency (TF) features of seismic data. Among the commonly used TFA tools, sparse TFA (STFA) is an excellent one, which can obtain a TF spectrum with good readability. However, many STFA algorithms suffer from expensive calculation time and unavoidable prior knowledge, such as the iterative shrinkage-thresholding algorithm (ISTA) and the sparse reconstruction by separable approximation (SpaRSA). Inspired by the unrolled algorithm and its successful applications in signal processing, we propose a deep learning-based ISTA unrolled algorithm, which is named the sparse time-frequency analysis network (STFANet). The STFANet contains two parts, i.e., the sparse time-frequency spectrum generator and the reconstruction module. The former learns how to transform a one-dimensional (1D) seismic signal from a large amount of unlabelled data into a two-dimensional (2D) sparse time-frequency spectrum, which is implemented based on the proposed unrolled iterative dynamic shrinkage-thresholding (UIDST) algorithm. Note that the UIDST algorithm is carried out by using a simplified deep learning network. The latter serves as a physical constraint of model training to ensure that our generator obtains an accurate TF spectrum, which is actually an inverse time-frequency transform. In this study, the traditional inverse short-time Fourier transform (STFT) is utilized in the reconstruction module. To test the effectiveness of the proposed model, we apply it to 3D post-stack field data. The results show that, compared with the traditional TFA tools, the STFANet can availably compute time-frequency spectrum with better readability, which benefits seismic attenuation delineation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助dy采纳,获得10
1秒前
1秒前
1秒前
毅梦完成签到,获得积分10
1秒前
1秒前
Master_Ye发布了新的文献求助10
2秒前
酒尚温完成签到 ,获得积分10
2秒前
2秒前
徐昊雯发布了新的文献求助10
2秒前
3秒前
3秒前
跳跃墨镜发布了新的文献求助10
4秒前
十六夜完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
6秒前
丰富的鞅完成签到,获得积分10
7秒前
7秒前
户学静发布了新的文献求助10
7秒前
自然的凝冬应助ljz910005采纳,获得20
7秒前
8秒前
8秒前
8秒前
QAINNNNN完成签到,获得积分20
8秒前
时尚浩轩完成签到 ,获得积分10
8秒前
King16完成签到,获得积分10
8秒前
兰彻发布了新的文献求助10
8秒前
sfwrbh完成签到,获得积分10
9秒前
在水一方应助开心金毛采纳,获得10
9秒前
10秒前
10秒前
爆米花应助naplzp采纳,获得20
11秒前
11秒前
sfwrbh发布了新的文献求助10
12秒前
徐昊雯发布了新的文献求助10
12秒前
科研通AI2S应助wxy采纳,获得10
12秒前
mutong发布了新的文献求助10
12秒前
lx完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437