Sparse Time–Frequency Analysis of Seismic Data: Sparse Representation to Unrolled Optimization

计算机科学 稀疏逼近 算法 时频分析 阈值 信号重构 稀疏矩阵 人工智能 频域 信号处理 模式识别(心理学) 高斯分布 计算机视觉 数字信号处理 量子力学 滤波器(信号处理) 图像(数学) 物理 计算机硬件
作者
Naihao Liu,Youbo Lei,Rongchang Liu,Yang Yang,Tao Wei,Jinghuai Gao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-10 被引量:25
标识
DOI:10.1109/tgrs.2023.3300578
摘要

Time-frequency analysis (TFA) is widely used to describe local time-frequency (TF) features of seismic data. Among the commonly used TFA tools, sparse TFA (STFA) is an excellent one, which can obtain a TF spectrum with good readability. However, many STFA algorithms suffer from expensive calculation time and unavoidable prior knowledge, such as the iterative shrinkage-thresholding algorithm (ISTA) and the sparse reconstruction by separable approximation (SpaRSA). Inspired by the unrolled algorithm and its successful applications in signal processing, we propose a deep learning-based ISTA unrolled algorithm, which is named the sparse time-frequency analysis network (STFANet). The STFANet contains two parts, i.e., the sparse time-frequency spectrum generator and the reconstruction module. The former learns how to transform a one-dimensional (1D) seismic signal from a large amount of unlabelled data into a two-dimensional (2D) sparse time-frequency spectrum, which is implemented based on the proposed unrolled iterative dynamic shrinkage-thresholding (UIDST) algorithm. Note that the UIDST algorithm is carried out by using a simplified deep learning network. The latter serves as a physical constraint of model training to ensure that our generator obtains an accurate TF spectrum, which is actually an inverse time-frequency transform. In this study, the traditional inverse short-time Fourier transform (STFT) is utilized in the reconstruction module. To test the effectiveness of the proposed model, we apply it to 3D post-stack field data. The results show that, compared with the traditional TFA tools, the STFANet can availably compute time-frequency spectrum with better readability, which benefits seismic attenuation delineation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
桐桐应助hfgeyt采纳,获得10
2秒前
ding应助R沫采纳,获得10
3秒前
shego发布了新的文献求助10
3秒前
lalala完成签到,获得积分10
5秒前
科研通AI2S应助幽默涑采纳,获得30
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
LHT完成签到,获得积分10
6秒前
6秒前
linda627发布了新的文献求助10
6秒前
深情安青应助Clairezg采纳,获得10
6秒前
曾经以亦完成签到,获得积分10
7秒前
10秒前
Owen应助优雅的雪一采纳,获得10
11秒前
科研通AI6.1应助556采纳,获得10
11秒前
顾矜应助童童采纳,获得10
11秒前
12秒前
瞬华发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
14秒前
大模型应助乾乾采纳,获得10
15秒前
郑小凝完成签到,获得积分10
15秒前
完美世界应助没有答案采纳,获得10
15秒前
15秒前
酷炫绮彤发布了新的文献求助10
15秒前
15秒前
JamesPei应助小牛马阿欢采纳,获得10
16秒前
16秒前
17秒前
17秒前
17秒前
于子杰发布了新的文献求助10
18秒前
18秒前
19秒前
万能图书馆应助zhuangzhiming采纳,获得10
19秒前
阳光的鲂完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770918
求助须知:如何正确求助?哪些是违规求助? 5588554
关于积分的说明 15426008
捐赠科研通 4904290
什么是DOI,文献DOI怎么找? 2638685
邀请新用户注册赠送积分活动 1586521
关于科研通互助平台的介绍 1541645