Sparse Time–Frequency Analysis of Seismic Data: Sparse Representation to Unrolled Optimization

计算机科学 稀疏逼近 算法 时频分析 阈值 信号重构 稀疏矩阵 人工智能 频域 信号处理 模式识别(心理学) 高斯分布 计算机视觉 数字信号处理 量子力学 滤波器(信号处理) 图像(数学) 物理 计算机硬件
作者
Naihao Liu,Youbo Lei,Rongchang Liu,Yang Yang,Tao Wei,Jinghuai Gao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-10 被引量:25
标识
DOI:10.1109/tgrs.2023.3300578
摘要

Time-frequency analysis (TFA) is widely used to describe local time-frequency (TF) features of seismic data. Among the commonly used TFA tools, sparse TFA (STFA) is an excellent one, which can obtain a TF spectrum with good readability. However, many STFA algorithms suffer from expensive calculation time and unavoidable prior knowledge, such as the iterative shrinkage-thresholding algorithm (ISTA) and the sparse reconstruction by separable approximation (SpaRSA). Inspired by the unrolled algorithm and its successful applications in signal processing, we propose a deep learning-based ISTA unrolled algorithm, which is named the sparse time-frequency analysis network (STFANet). The STFANet contains two parts, i.e., the sparse time-frequency spectrum generator and the reconstruction module. The former learns how to transform a one-dimensional (1D) seismic signal from a large amount of unlabelled data into a two-dimensional (2D) sparse time-frequency spectrum, which is implemented based on the proposed unrolled iterative dynamic shrinkage-thresholding (UIDST) algorithm. Note that the UIDST algorithm is carried out by using a simplified deep learning network. The latter serves as a physical constraint of model training to ensure that our generator obtains an accurate TF spectrum, which is actually an inverse time-frequency transform. In this study, the traditional inverse short-time Fourier transform (STFT) is utilized in the reconstruction module. To test the effectiveness of the proposed model, we apply it to 3D post-stack field data. The results show that, compared with the traditional TFA tools, the STFANet can availably compute time-frequency spectrum with better readability, which benefits seismic attenuation delineation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助巴适地瓜采纳,获得10
1秒前
淳于君浩完成签到,获得积分10
1秒前
1秒前
小田完成签到,获得积分20
2秒前
刘敏完成签到 ,获得积分10
2秒前
qing发布了新的文献求助10
4秒前
伯赏思山完成签到,获得积分10
4秒前
赘婿应助闪闪的屁股采纳,获得10
4秒前
李爱国应助半夏采纳,获得10
5秒前
6秒前
aixin完成签到,获得积分10
8秒前
Jourmore完成签到,获得积分10
8秒前
小房子完成签到,获得积分10
9秒前
阿槿完成签到,获得积分20
9秒前
9秒前
Owen应助ddddd采纳,获得10
9秒前
10秒前
li发布了新的文献求助10
12秒前
Owen应助YML采纳,获得10
12秒前
闪闪的屁股完成签到,获得积分10
12秒前
15秒前
称心芷巧发布了新的文献求助10
15秒前
16秒前
YML完成签到,获得积分10
19秒前
21秒前
大气白翠完成签到,获得积分10
21秒前
21秒前
九九完成签到,获得积分10
22秒前
礽粥粥完成签到,获得积分10
23秒前
青仔仔完成签到,获得积分10
24秒前
25秒前
汉诺威橡树完成签到,获得积分10
25秒前
YML发布了新的文献求助10
26秒前
29秒前
苹果井完成签到,获得积分10
29秒前
Lucas应助unique采纳,获得10
29秒前
如意代秋发布了新的文献求助10
30秒前
yuan完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961032
求助须知:如何正确求助?哪些是违规求助? 3507273
关于积分的说明 11135142
捐赠科研通 3239686
什么是DOI,文献DOI怎么找? 1790338
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150