Sparse Time–Frequency Analysis of Seismic Data: Sparse Representation to Unrolled Optimization

计算机科学 稀疏逼近 算法 时频分析 阈值 信号重构 稀疏矩阵 人工智能 频域 信号处理 模式识别(心理学) 高斯分布 计算机视觉 数字信号处理 量子力学 滤波器(信号处理) 图像(数学) 物理 计算机硬件
作者
Naihao Liu,Youbo Lei,Rongchang Liu,Yang Yang,Tao Wei,Jinghuai Gao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-10 被引量:25
标识
DOI:10.1109/tgrs.2023.3300578
摘要

Time-frequency analysis (TFA) is widely used to describe local time-frequency (TF) features of seismic data. Among the commonly used TFA tools, sparse TFA (STFA) is an excellent one, which can obtain a TF spectrum with good readability. However, many STFA algorithms suffer from expensive calculation time and unavoidable prior knowledge, such as the iterative shrinkage-thresholding algorithm (ISTA) and the sparse reconstruction by separable approximation (SpaRSA). Inspired by the unrolled algorithm and its successful applications in signal processing, we propose a deep learning-based ISTA unrolled algorithm, which is named the sparse time-frequency analysis network (STFANet). The STFANet contains two parts, i.e., the sparse time-frequency spectrum generator and the reconstruction module. The former learns how to transform a one-dimensional (1D) seismic signal from a large amount of unlabelled data into a two-dimensional (2D) sparse time-frequency spectrum, which is implemented based on the proposed unrolled iterative dynamic shrinkage-thresholding (UIDST) algorithm. Note that the UIDST algorithm is carried out by using a simplified deep learning network. The latter serves as a physical constraint of model training to ensure that our generator obtains an accurate TF spectrum, which is actually an inverse time-frequency transform. In this study, the traditional inverse short-time Fourier transform (STFT) is utilized in the reconstruction module. To test the effectiveness of the proposed model, we apply it to 3D post-stack field data. The results show that, compared with the traditional TFA tools, the STFANet can availably compute time-frequency spectrum with better readability, which benefits seismic attenuation delineation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shm123321发布了新的文献求助10
刚刚
2秒前
SwampMan完成签到,获得积分10
2秒前
聪慧石头发布了新的文献求助10
2秒前
jzt12138发布了新的文献求助10
3秒前
优雅若蕊发布了新的文献求助10
3秒前
Junly发布了新的文献求助10
3秒前
3秒前
Jasper应助难过的谷芹采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
null应助科研通管家采纳,获得10
4秒前
俊逸忻应助科研通管家采纳,获得10
4秒前
CodeCraft应助沈世尧采纳,获得10
4秒前
MIZU应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
无极微光应助超级的冷松采纳,获得20
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
吃瓜少女应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得30
5秒前
5秒前
852应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
null应助科研通管家采纳,获得10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
null应助科研通管家采纳,获得10
6秒前
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
俊逸忻应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6.1应助11采纳,获得10
6秒前
MIZU应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735420
求助须知:如何正确求助?哪些是违规求助? 5360561
关于积分的说明 15329871
捐赠科研通 4879609
什么是DOI,文献DOI怎么找? 2622093
邀请新用户注册赠送积分活动 1571250
关于科研通互助平台的介绍 1528108