Sparse Time–Frequency Analysis of Seismic Data: Sparse Representation to Unrolled Optimization

计算机科学 稀疏逼近 算法 时频分析 阈值 信号重构 稀疏矩阵 人工智能 频域 信号处理 模式识别(心理学) 高斯分布 计算机视觉 数字信号处理 量子力学 滤波器(信号处理) 图像(数学) 物理 计算机硬件
作者
Naihao Liu,Youbo Lei,Rongchang Liu,Yang Yang,Tao Wei,Jinghuai Gao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-10 被引量:25
标识
DOI:10.1109/tgrs.2023.3300578
摘要

Time-frequency analysis (TFA) is widely used to describe local time-frequency (TF) features of seismic data. Among the commonly used TFA tools, sparse TFA (STFA) is an excellent one, which can obtain a TF spectrum with good readability. However, many STFA algorithms suffer from expensive calculation time and unavoidable prior knowledge, such as the iterative shrinkage-thresholding algorithm (ISTA) and the sparse reconstruction by separable approximation (SpaRSA). Inspired by the unrolled algorithm and its successful applications in signal processing, we propose a deep learning-based ISTA unrolled algorithm, which is named the sparse time-frequency analysis network (STFANet). The STFANet contains two parts, i.e., the sparse time-frequency spectrum generator and the reconstruction module. The former learns how to transform a one-dimensional (1D) seismic signal from a large amount of unlabelled data into a two-dimensional (2D) sparse time-frequency spectrum, which is implemented based on the proposed unrolled iterative dynamic shrinkage-thresholding (UIDST) algorithm. Note that the UIDST algorithm is carried out by using a simplified deep learning network. The latter serves as a physical constraint of model training to ensure that our generator obtains an accurate TF spectrum, which is actually an inverse time-frequency transform. In this study, the traditional inverse short-time Fourier transform (STFT) is utilized in the reconstruction module. To test the effectiveness of the proposed model, we apply it to 3D post-stack field data. The results show that, compared with the traditional TFA tools, the STFANet can availably compute time-frequency spectrum with better readability, which benefits seismic attenuation delineation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
落后的冬云完成签到,获得积分10
1秒前
研友_VZG7GZ应助wangxiaobin采纳,获得10
1秒前
风趣安青发布了新的文献求助10
1秒前
迅速的八宝粥完成签到 ,获得积分10
1秒前
1秒前
1秒前
SciGPT应助沉静的迎荷采纳,获得10
2秒前
雨中石完成签到,获得积分10
2秒前
yiwan发布了新的文献求助10
2秒前
大麦迪发布了新的文献求助10
2秒前
嘉芮完成签到,获得积分10
3秒前
RR发布了新的文献求助10
3秒前
茶茶发布了新的文献求助10
3秒前
专注的曼凡完成签到,获得积分10
4秒前
李健应助东东采纳,获得10
4秒前
4秒前
元谷雪发布了新的文献求助10
4秒前
今后应助求知的秀儿采纳,获得10
4秒前
爆米花应助库三金采纳,获得30
4秒前
慕新发布了新的文献求助10
4秒前
糖糖钰完成签到,获得积分20
5秒前
5秒前
5秒前
华仔应助荼蘼采纳,获得10
6秒前
nanomolar完成签到,获得积分20
6秒前
6秒前
岄岒yq发布了新的文献求助10
7秒前
文小武完成签到 ,获得积分10
7秒前
7秒前
体贴的绿茶完成签到,获得积分10
7秒前
忆枫完成签到,获得积分10
8秒前
8秒前
飞快的语蕊完成签到,获得积分10
8秒前
MYH应助yemiao采纳,获得10
9秒前
9秒前
9秒前
Menand完成签到,获得积分10
9秒前
9秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441016
求助须知:如何正确求助?哪些是违规求助? 3037387
关于积分的说明 8968794
捐赠科研通 2725927
什么是DOI,文献DOI怎么找? 1495136
科研通“疑难数据库(出版商)”最低求助积分说明 691137
邀请新用户注册赠送积分活动 687879