已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sparse Time–Frequency Analysis of Seismic Data: Sparse Representation to Unrolled Optimization

计算机科学 稀疏逼近 算法 时频分析 阈值 信号重构 稀疏矩阵 人工智能 频域 信号处理 模式识别(心理学) 高斯分布 计算机视觉 数字信号处理 量子力学 滤波器(信号处理) 图像(数学) 物理 计算机硬件
作者
Naihao Liu,Youbo Lei,Rongchang Liu,Yang Yang,Tao Wei,Jinghuai Gao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-10 被引量:25
标识
DOI:10.1109/tgrs.2023.3300578
摘要

Time-frequency analysis (TFA) is widely used to describe local time-frequency (TF) features of seismic data. Among the commonly used TFA tools, sparse TFA (STFA) is an excellent one, which can obtain a TF spectrum with good readability. However, many STFA algorithms suffer from expensive calculation time and unavoidable prior knowledge, such as the iterative shrinkage-thresholding algorithm (ISTA) and the sparse reconstruction by separable approximation (SpaRSA). Inspired by the unrolled algorithm and its successful applications in signal processing, we propose a deep learning-based ISTA unrolled algorithm, which is named the sparse time-frequency analysis network (STFANet). The STFANet contains two parts, i.e., the sparse time-frequency spectrum generator and the reconstruction module. The former learns how to transform a one-dimensional (1D) seismic signal from a large amount of unlabelled data into a two-dimensional (2D) sparse time-frequency spectrum, which is implemented based on the proposed unrolled iterative dynamic shrinkage-thresholding (UIDST) algorithm. Note that the UIDST algorithm is carried out by using a simplified deep learning network. The latter serves as a physical constraint of model training to ensure that our generator obtains an accurate TF spectrum, which is actually an inverse time-frequency transform. In this study, the traditional inverse short-time Fourier transform (STFT) is utilized in the reconstruction module. To test the effectiveness of the proposed model, we apply it to 3D post-stack field data. The results show that, compared with the traditional TFA tools, the STFANet can availably compute time-frequency spectrum with better readability, which benefits seismic attenuation delineation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shame完成签到 ,获得积分10
3秒前
黄树明发布了新的文献求助10
3秒前
Rn完成签到 ,获得积分0
3秒前
香蕉觅云应助GDL采纳,获得10
4秒前
dadabad完成签到 ,获得积分10
7秒前
毛舒敏完成签到 ,获得积分10
8秒前
swimming完成签到 ,获得积分10
10秒前
阿南完成签到 ,获得积分10
11秒前
15秒前
爆米花应助黄树明采纳,获得10
16秒前
Fxy完成签到 ,获得积分10
18秒前
abc乐荷发布了新的文献求助10
19秒前
19秒前
21秒前
丘比特应助阳胜军采纳,获得10
22秒前
quzhenzxxx完成签到 ,获得积分10
23秒前
喵喵发布了新的文献求助10
24秒前
25秒前
我不是哪吒完成签到 ,获得积分10
25秒前
奋斗的朋友完成签到 ,获得积分10
29秒前
30秒前
Ren完成签到 ,获得积分10
31秒前
Zyc完成签到 ,获得积分10
31秒前
喵喵完成签到,获得积分10
32秒前
郭子仪发布了新的文献求助10
33秒前
gzwhh发布了新的文献求助10
34秒前
Yingkun_Xu完成签到,获得积分10
36秒前
abc乐荷完成签到,获得积分10
37秒前
如愿常隐行完成签到 ,获得积分10
38秒前
zh123完成签到,获得积分10
39秒前
董小妍完成签到 ,获得积分10
43秒前
Owen应助gzwhh采纳,获得30
49秒前
郭子仪完成签到,获得积分10
49秒前
大模型应助不安的鸡翅采纳,获得10
51秒前
完美世界应助呆萌的亦竹采纳,获得10
52秒前
53秒前
54秒前
大帅比完成签到 ,获得积分10
56秒前
1分钟前
往往超可爱完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714084
求助须知:如何正确求助?哪些是违规求助? 5220378
关于积分的说明 15272661
捐赠科研通 4865670
什么是DOI,文献DOI怎么找? 2612250
邀请新用户注册赠送积分活动 1562416
关于科研通互助平台的介绍 1519611