锂(药物)
溶解
化学物理
电化学
相(物质)
化学
纳米技术
化学工程
材料科学
电极
物理化学
有机化学
医学
工程类
内分泌学
作者
Shiyuan Zhou,Jie Shi,Sangui Liu,Gen Li,Fei Pei,Youhu Chen,Junxian Deng,Qizheng Zheng,Jiayi Li,Chen Zhao,Inhui Hwang,Chengjun Sun,Yuzi Liu,Yu Deng,Ling Huang,Yu Qiao,Gui‐Liang Xu,Jian‐Feng Chen,Khalil Amine,Shi‐Gang Sun,Hong‐Gang Liao
出处
期刊:Nature
[Springer Nature]
日期:2023-09-06
卷期号:621 (7977): 75-81
被引量:154
标识
DOI:10.1038/s41586-023-06326-8
摘要
Benefiting from high energy density (2,600 Wh kg-1) and low cost, lithium-sulfur (Li-S) batteries are considered promising candidates for advanced energy-storage systems1-4. Despite tremendous efforts in suppressing the long-standing shuttle effect of lithium polysulfides5-7, understanding of the interfacial reactions of lithium polysulfides at the nanoscale remains elusive. This is mainly because of the limitations of in situ characterization tools in tracing the liquid-solid conversion of unstable lithium polysulfides at high temporal-spatial resolution8-10. There is an urgent need to understand the coupled phenomena inside Li-S batteries, specifically, the dynamic distribution, aggregation, deposition and dissolution of lithium polysulfides. Here, by using in situ liquid-cell electrochemical transmission electron microscopy, we directly visualized the transformation of lithium polysulfides over electrode surfaces at the atomic scale. Notably, an unexpected gathering-induced collective charge transfer of lithium polysulfides was captured on the nanocluster active-centre-immobilized surface. It further induced an instantaneous deposition of nonequilibrium Li2S nanocrystals from the dense liquid phase of lithium polysulfides. Without mediation of active centres, the reactions followed a classical single-molecule pathway, lithium polysulfides transforming into Li2S2 and Li2S step by step. Molecular dynamics simulations indicated that the long-range electrostatic interaction between active centres and lithium polysulfides promoted the formation of a dense phase consisting of Li+ and Sn2- (2 < n ≤ 6), and the collective charge transfer in the dense phase was further verified by ab initio molecular dynamics simulations. The collective interfacial reaction pathway unveils a new transformation mechanism and deepens the fundamental understanding of Li-S batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI