Explore the Ionic Conductivity Trends on B12H12 Divalent Closo-Type Complex Hydride Electrolytes

离子电导率 电解质 二价 扩散 化学物理 氢化物 离子键合 电导率 离子 电池(电) 快离子导体 锂(药物) 分子 化学 材料科学 热力学 物理化学 物理 电极 金属 有机化学 医学 功率(物理) 内分泌学
作者
Egon Campos dos Santos,Ryuhei Sato,Kazuaki Kisu,Kartik Sau,Xue Jia,Fangling Yang,Shin‐ichi Orimo,Hao Li
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:35 (15): 5996-6004 被引量:7
标识
DOI:10.1021/acs.chemmater.3c00975
摘要

The need for next-generation batteries is as urgent as ever. Over the past few decades, many attempts to find "beyond lithium" battery electrolytes have been reported, and, in particular, divalent closo-type complex hydride (CTCH) electrolytes are valuable alternatives to overcome the safety and energy density limitations of lithium-ion technology. Experiments have found that adding neutral molecules into the CTCH lattice can significantly promote its performance as battery electrolytes by accelerating cation conductivity (i.e., diffusion rate). However, the extremely high structural complexity of neutral molecules containing CTCHs hampers the exploration of ionic diffusion mechanisms and the design of high-performance batteries. To address this challenge, herein, cation diffusions of various CTCHs are analyzed by a workflow combining (i) a global optimization strategy based on a genetic algorithm, which will allow for identifying stable crystal phases of CTCHs, and (ii) ab initio kinetics and molecular dynamics simulations for cation diffusion. Without relying on any experimental information beforehand, this integrated strategy not only successfully predicts structural information that is comparable to experiments but also predicts almost identical diffusion activation energies compared to experimental observations. Based on these results, we developed robust structure-performance relationships that can precisely predict the divalent CTCH performance and identify the key factors that affect ionic conductivity. This study paves a new avenue for building a precise structure–performance picture of complex materials starting from near-zero information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZN发布了新的文献求助10
2秒前
2秒前
852应助777采纳,获得10
2秒前
科研通AI5应助流星雨采纳,获得10
3秒前
HonestLiang完成签到,获得积分10
3秒前
无花果应助小乔采纳,获得10
4秒前
火星上的菲鹰应助2032jia采纳,获得10
5秒前
bgt完成签到 ,获得积分10
5秒前
和平发展完成签到 ,获得积分10
7秒前
扒开皮皮发布了新的文献求助10
9秒前
yuqinghui98发布了新的文献求助10
9秒前
今后应助可乐不加冰0303采纳,获得10
11秒前
喜欢秋天xx_y完成签到,获得积分20
11秒前
半壶月色半边天完成签到 ,获得积分10
12秒前
12秒前
13秒前
wanci应助ZN采纳,获得10
13秒前
14秒前
14秒前
TobyGarfielD完成签到 ,获得积分10
16秒前
YifanWang应助永曼采纳,获得20
16秒前
华仔应助浅斟低唱采纳,获得10
16秒前
诗蕊完成签到 ,获得积分10
17秒前
17秒前
777发布了新的文献求助10
18秒前
流星雨发布了新的文献求助10
18秒前
默默地读文献应助高兴123采纳,获得10
19秒前
小蘑菇应助高兴123采纳,获得10
19秒前
852应助高兴123采纳,获得10
19秒前
爆米花应助高兴123采纳,获得10
19秒前
FashionBoy应助高兴123采纳,获得30
19秒前
taozi完成签到,获得积分0
19秒前
NN完成签到,获得积分10
20秒前
小乔发布了新的文献求助10
20秒前
橘子石榴完成签到,获得积分10
21秒前
栗子发布了新的文献求助10
23秒前
25秒前
hu完成签到,获得积分10
25秒前
协和_子鱼发布了新的文献求助10
30秒前
11111发布了新的文献求助30
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671865
求助须知:如何正确求助?哪些是违规求助? 3228411
关于积分的说明 9780495
捐赠科研通 2938947
什么是DOI,文献DOI怎么找? 1610296
邀请新用户注册赠送积分活动 760634
科研通“疑难数据库(出版商)”最低求助积分说明 736119