Nanostructured SnO2 Microsphere-Based Gas Sensor Array Enhanced by Molecular Imprinting for Methanol and Ethanol Discriminative Detection

选择性 甲醇 分子印迹 材料科学 煅烧 纳米技术 化学工程 化学 催化作用 有机化学 工程类
作者
Weinan Song,Mingxue Zhang,Weiguang Zhao,Qinglu Zhao,Hongshun Hao,Hai Lin,Wenyuan Gao,Shuang Yan
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:5 (9): 12765-12777 被引量:8
标识
DOI:10.1021/acsanm.2c02662
摘要

A modification approach is developed based on the idea of molecular imprinting technique to enhance the selective gas sensing performance of nanostructured SnO2 as gas sensors. The modification procedure, conducted on SnO2 microspheres as the porous substrate, involves in situ polymerization and calcination processes. A methanol-templated molecularly imprinted sample (cM-SnO2 MIP) was successfully synthesized via the modification procedure, which demonstrated great difference with its nonmodified counterpart (c-SnO2 MSs) in terms of both surface morphology and internal architecture. Gas sensing performance, including target gas response, selectivity, and dynamic sensing behavior, was investigated to validate the effectiveness of the imprinted cavities for methanol within cM-SnO2 MIPs. Compared to c-SnO2 MSs, the cM-SnO2 MIPs exhibited greatly enhanced methanol sensing selectivity and improved anti-interference ability by up to 2–10 times depending on the types of interference gases. Moreover, the predesigned target gas recognition capability of the molecularly imprinted sensors was proved by changing the template to ethanol and thus obtaining cE-SnO2 MIPs with excellent ethanol sensing selectivity as well as improved anti-interference ability. By constructing a sensor array, the excellent sensing selectivity of these nanostructured SnO2 microspheres was exploited to distinguish the chemically similar molecules, methanol and ethanol.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助静静采纳,获得10
刚刚
1秒前
小蘑菇应助只吃凤梨酥采纳,获得10
1秒前
yangbin710发布了新的文献求助30
2秒前
Sean0382发布了新的文献求助10
4秒前
我是老大应助小孟采纳,获得10
4秒前
6秒前
7秒前
8秒前
虚心的不二完成签到 ,获得积分10
8秒前
淡淡大山发布了新的文献求助10
9秒前
居居完成签到,获得积分10
9秒前
芋圆不圆发布了新的文献求助10
11秒前
12秒前
13秒前
布知道完成签到 ,获得积分10
13秒前
Silvia完成签到,获得积分10
13秒前
迟大猫应助科研通管家采纳,获得10
14秒前
大番茄应助科研通管家采纳,获得10
14秒前
背后的皮带完成签到 ,获得积分10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得30
14秒前
大番茄应助科研通管家采纳,获得10
14秒前
王子安应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
大番茄应助科研通管家采纳,获得10
14秒前
汉堡包应助Sean0382采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
华仔应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
聪明凌柏完成签到 ,获得积分10
17秒前
17秒前
Zilch完成签到 ,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538670
求助须知:如何正确求助?哪些是违规求助? 3116388
关于积分的说明 9325077
捐赠科研通 2814221
什么是DOI,文献DOI怎么找? 1546519
邀请新用户注册赠送积分活动 720607
科研通“疑难数据库(出版商)”最低求助积分说明 712086