Low Thermal Budget Growth of Near‐Isotropic Diamond Grains for Heat Spreading in Semiconductor Devices

材料科学 钻石 热导率 半导体 成核 热膨胀 光电子学 复合材料 热力学 物理
作者
Mohamadali Malakoutian,Xiang Zheng,K. Woo,Rohith Soman,Anna Kasperovich,James W. Pomeroy,Martin Kuball,Srabanti Chowdhury
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:32 (47) 被引量:16
标识
DOI:10.1002/adfm.202208997
摘要

Abstract The ever‐increasing power density is a major trend for electronics applications from dense computing to 5G/6G networks. Joule heating and resulting high temperature in the device channel due to the increased power density results in performance degradation and premature failure. Diamond integration near the hot spot can spread the heat by increasing the heat transfer coefficient. Diamond is mostly grown at high temperatures (700–1000 °C), which limits its integration with many semiconductor technologies. Here, a high‐quality 400 °C‐diamond by modifying the gas chemistry at different nucleation stages, with a sharp sp 3 Raman peak (FWHM≈6.5 cm −1 ) and high phase purity (97.1%), similar to 700 °C‐diamond (>98%) is demonstrated. An average grain size of 650 nm with a thickness of 790 nm corresponding to an anisotropy ratio of 1.21 at 400 °C close to the best‐reported of 1.12 at 700 °C is achieved. This near‐isotropic diamond exhibits a relatively high thermal conductivity of ≈300 W m −1 K −1 and a thermal boundary resistance as small as only 5 m 2 K G −1 W −1 (on SiO 2 and Si 3 N 4 ). Achieving such a high‐quality diamond at 400 °C demonstrates the possibility to grow the diamond on a wide range of semiconductors including Si, InP, Ga 2 O 3 , SiC, and GaN where SiO 2 or its variations, and Si 3 N 4 are commonly used dielectrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄黄发布了新的文献求助10
刚刚
1秒前
1秒前
烟花应助科研通管家采纳,获得10
2秒前
险胜应助科研通管家采纳,获得10
2秒前
yangya应助科研通管家采纳,获得10
2秒前
iNk应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
萧水白应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
寻道图强应助科研通管家采纳,获得30
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
3秒前
积极小全关注了科研通微信公众号
3秒前
108实验室发布了新的文献求助10
3秒前
Czt完成签到,获得积分10
4秒前
回来完成签到,获得积分10
4秒前
zwl发布了新的文献求助10
6秒前
7秒前
郎治宇完成签到 ,获得积分10
7秒前
天天开心完成签到,获得积分10
8秒前
8秒前
ZMT230627发布了新的文献求助10
9秒前
斯文败类应助Hoooo...采纳,获得10
10秒前
李健应助黄黄采纳,获得10
10秒前
mount发布了新的文献求助10
10秒前
传奇3应助ning采纳,获得10
10秒前
nancy wang发布了新的文献求助10
10秒前
玛卡巴卡发布了新的文献求助10
11秒前
11秒前
zwl完成签到,获得积分10
11秒前
顾矜应助优雅的纸鹤采纳,获得10
12秒前
14秒前
man完成签到 ,获得积分10
14秒前
优雅的小蘑菇关注了科研通微信公众号
14秒前
李健应助fairy采纳,获得10
15秒前
17秒前
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309946
求助须知:如何正确求助?哪些是违规求助? 2943074
关于积分的说明 8512532
捐赠科研通 2618172
什么是DOI,文献DOI怎么找? 1430892
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649490