Analysing customers' reviews and ratings for online food deliveries: A text mining approach

旅游 食物运送 营销 分层抽样 服务交付框架 业务 服务(商务) 订单(交换) 食品卫生 内容分析 心理学 食品安全 医学 地理 社会学 病理 财务 社会科学 考古
作者
Farheen Khan,Suhail Ahmad Khan,Khalid Shamim,Yuvika Gupta,Shariq I. Sherwani
出处
期刊:International Journal of Consumer Studies [Wiley]
卷期号:47 (3): 953-976 被引量:13
标识
DOI:10.1111/ijcs.12877
摘要

Abstract The purpose of this study was to explore the relationship between online reviews and ratings through text mining and empirical techniques. An Indian food delivery portal ( Zomato.com ) was used, where 50 restaurants on Presence Across Nation (PAN) basis were selected through stratified random sampling. A total of 2530 reviews were collected, scrutinized, and analysed. Using the NVivo software for qualitative analysis, seven themes were identified from collected reviews, out of which, the ‘delivery’ theme was explored further for identifying sub‐themes. Linear regression modelling was used to identify the variables affecting delivery ratings and sentiment analysis was also performed on the identified sub‐themes. Regression results revealed that hygiene and pricing (delivery subthemes) demonstrated lower delivery ratings. These variables can be established as indicators for restaurants and related online food delivery services to build their business model around them. Similarly, negative sentiments were observed in pricing and hygiene sub‐themes. Restaurants and online food services can enhance hygiene levels of their food delivery process in order to receive higher delivery ratings. Similarly, pricing of food items can be modified such that customers are not deterred from ordering the items—food and ordering service do not become cost‐prohibitive. This study devised a standardized methodology for analysing vast amounts of online user‐generated content (UGC). Findings from this study can be extrapolated to other sectors and service industries such as, tourism, cleaning, transportation, hospitals and engineering especially during the pandemic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿文发布了新的文献求助10
1秒前
妩媚的语蕊完成签到,获得积分10
1秒前
3秒前
桂圆妈妈发布了新的文献求助10
3秒前
24cccc完成签到,获得积分10
3秒前
大模型应助鱼雷采纳,获得10
3秒前
3秒前
lllyq发布了新的文献求助10
4秒前
幽默的语蕊关注了科研通微信公众号
4秒前
123发布了新的文献求助10
4秒前
5秒前
5秒前
九思发布了新的文献求助10
5秒前
852应助1609855535采纳,获得10
6秒前
6秒前
爆炸boom发布了新的文献求助10
6秒前
刘学发布了新的文献求助10
6秒前
6秒前
afsdfds发布了新的文献求助10
6秒前
烟花应助如忆婧年采纳,获得10
7秒前
滴歪歪完成签到 ,获得积分10
8秒前
深居简出完成签到,获得积分10
8秒前
Bonnie87发布了新的文献求助30
8秒前
火星上白安完成签到,获得积分10
9秒前
mjs完成签到,获得积分10
9秒前
刘柑橘完成签到,获得积分10
9秒前
科研小趴菜完成签到,获得积分10
9秒前
spiritpope发布了新的文献求助10
9秒前
咕咕应助哈哈哈采纳,获得10
9秒前
知行发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
Hello应助caoling采纳,获得10
10秒前
夏夏完成签到,获得积分20
11秒前
11秒前
风清扬发布了新的文献求助10
11秒前
11秒前
pcr163应助mytx采纳,获得100
12秒前
12秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474656
求助须知:如何正确求助?哪些是违规求助? 3066757
关于积分的说明 9100781
捐赠科研通 2758095
什么是DOI,文献DOI怎么找? 1513343
邀请新用户注册赠送积分活动 699504
科研通“疑难数据库(出版商)”最低求助积分说明 699016