A big data analytics framework for determining the travel destination preferences of Indian tourists

旅游 地球仪 社会化媒体 业务 营销 广告 大数据 目的地 地理 计算机科学 万维网 数据挖掘 心理学 考古 神经科学
作者
Kamal Kumar Ranga,C. K. Nagpal
出处
期刊:International Journal of Modern Physics C [World Scientific]
卷期号:34 (02) 被引量:5
标识
DOI:10.1142/s0129183123500249
摘要

The growth of technology and social media websites has increased the potential to online explore different products and places around the globe. While online websites are primarily responsible for the generation of large amounts of data, this big data may be beneficial to other users provided the proper decision pattern can be analyzed. This work is focusing on the big data from social media to determine the travel destination preferences for Indian tourists. The analysis of online tourism reviews is beneficial to both tourists and businesses in tourist countries. Tourists can analyze all the required aspects prior to traveling and businesses in the destination country can enhance their products. The study aims to analyze the online tourist reviews using supervised machine learning methods (decision tree, k-nearest neighbor, back propagation neural networks and support vector machine) and ensemble learning in order to ascertain the travel preferences of Indian tourists visiting other countries. For the research experiments, significant travel data histories of tourists for the five destination places (Dubai, Indonesia, Malaysia, Thailand and Singapore) are extracted from TripAdvisor. TripAdvisor is a worldwide popular tourism website that provides access to consumers to share their travel experiences. From the selected five destination places, the preferences of Indian tourists are analyzed for the factors of travel & destination comfort, hotel facilities, food quality and attractions of the place. The analysis results of the proposed recommendation system indicate the determination of precise suggestions for Indian tourists traveling to other countries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZQ发布了新的文献求助10
刚刚
领导范儿应助含蓄的涟妖采纳,获得10
2秒前
3秒前
3秒前
4秒前
5秒前
SciGPT应助科研通管家采纳,获得30
5秒前
思源应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得20
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得30
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得30
6秒前
wanci应助科研通管家采纳,获得10
7秒前
cc应助科研通管家采纳,获得10
7秒前
xingyue完成签到,获得积分10
8秒前
负责的珩发布了新的文献求助10
8秒前
fff发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
赘婿应助hgzz采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
三十三完成签到,获得积分10
11秒前
玛卡巴卡发布了新的文献求助20
13秒前
酷波er应助xingwen采纳,获得10
13秒前
湖里发布了新的文献求助10
13秒前
14秒前
15秒前
xiao完成签到,获得积分10
17秒前
EatTheCat完成签到,获得积分10
17秒前
18秒前
轻松乾发布了新的文献求助30
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664444
求助须知:如何正确求助?哪些是违规求助? 3224488
关于积分的说明 9757694
捐赠科研通 2934379
什么是DOI,文献DOI怎么找? 1606832
邀请新用户注册赠送积分活动 758873
科研通“疑难数据库(出版商)”最低求助积分说明 735012